Rainstorms, insect swarms, and galloping horses produce "sound textures"-the collective result of many similar acoustic events. Sound textures are distinguished by temporal homogeneity, suggesting they could be recognized with time-averaged statistics. To test this hypothesis, we processed real-world textures with an auditory model containing filters tuned for sound frequencies and their modulations, and measured statistics of the resulting decomposition. We then assessed the realism and recognizability of novel sounds synthesized to have matching statistics. Statistics of individual frequency channels, capturing spectral power and sparsity, generally failed to produce compelling synthetic textures; however, combining them with correlations between channels produced identifiable and natural-sounding textures. Synthesis quality declined if statistics were computed from biologically implausible auditory models. The results suggest that sound texture perception is mediated by relatively simple statistics of early auditory representations, presumably computed by downstream neural populations. The synthesis methodology offers a powerful tool for their further investigation.