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Abstract

Recent work has shown that human auditory cortex contains neural populations anterior and posterior to primary auditory cortex that
respond selectively to music. However, it is unknown how this selectivity for music arises. To test whether musical training is neces-
sary, we measured fMRI responses to 192 natural sounds in 10 people with almost no musical training. When voxel responses were
decomposed into underlying components, this group exhibited a music-selective component that was very similar in response profile
and anatomical distribution to that previously seen in individuals with moderate musical training. We also found that musical genres
that were less familiar to our participants (e.g., Balinese gamelan) produced strong responses within the music component, as did
drum clips with rhythm but little melody, suggesting that these neural populations are broadly responsive to music as a whole. Our
findings demonstrate that the signature properties of neural music selectivity do not require musical training to develop, showing that
the music-selective neural populations are a fundamental and widespread property of the human brain.

NEW & NOTEWORTHY We show that music-selective neural populations are clearly present in people without musical training,
demonstrating that they are a fundamental and widespread property of the human brain. Additionally, we show music-selective
neural populations respond strongly to music from unfamiliar genres as well as music with rhythm but little pitch information,
suggesting that they are broadly responsive to music as a whole.

auditory cortex; decomposition; expertise; fMRI; music

INTRODUCTION

Music is uniquely and universally human (1), and musical
abilities arise early in development (2). Recent evidence has
revealed neural populations in bilateral nonprimary audi-
tory cortex that respond selectively to music and thus seem
likely to figure importantly inmusical perception and behav-
ior (3–9). How does such selectivity arise? Most members of
Western societies have received at least some explicit musi-
cal training in the form of lessons or classes, and it is possible
that this training leads to the emergence of music-selective
neural populations. However, most Western individuals,
including nonmusicians, also implicitly acquire knowledge
of musical structure from a lifetime of exposure to music
(10–15). Thus, another possibility is that this type of passive

experience with music is sufficient for the development of
cortical music selectivity. The roles of these two forms of
musical experience in the neural representation of music are
not understood. Here, we directly test whether explicit musi-
cal training is necessary for the development of music-selec-
tive neural responses, by testing whether music-selective
responses are robustly present—with similar response char-
acteristics and anatomical distribution—in individuals with
little or no explicit training.

Why might explicit musical training be necessary for neu-
ral tuning tomusic? The closest analogy in the visual domain
is learning to read, where several studies have shown that se-
lectivity to visual orthography (16) arises in high-level visual
cortex only after children are taught to read (17, 18). In addi-
tion, exposure to specific sounds can elicit long-term
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changes in auditory cortex, such as sharper tuning of indi-
vidual neurons (19–21) and expansion of cortical maps (21–
23). These changes occur primarily for behaviorally relevant
stimulus features (23–27) related to the intrinsic reward
value of the stimulus (26, 28, 29), and thus are closely linked
to the neuromodulatory system (30–32). Additionally, the
extent of cortical map expansion is correlated with the ani-
mal’s subsequent improvement in behavioral performance
(21–23, 33–35). Most of this prior work on experience-driven
plasticity in auditory cortex has been done in animals under-
going extensive training on simple sensory sound dimen-
sions, and it has remained unclear how the results from this
work might generalize to humans in more natural settings
with higher-level perceptual features. Musical training in
humansmeets virtually all of these criteria for eliciting func-
tional plasticity: playing music requires focused attention,
fine-grained sensory-motor coordination, it is known to
engage the neuromodulatory system (36–38), and expert
musicians often begin training at a young age and hone their
skills over many years.

Although many prior studies have measured neural
changes as a result of auditory experience (39, 40), including
comparing responses in musicians and nonmusicians (41–
54), it remains unclear whether any tuning properties of audi-
tory cortex depend onmusical training. Previous studies have
found that fMRI responses to music are larger in musicians
compared with nonmusicians in posterior superior temporal
gyrus (41, 48, 52). However, these responses were not shown
to be selective for music, leaving the relationship between
musical training and cortical music selectivity unclear.

Music selectivity is weak when measured in raw voxel
responses using standard voxel-wise fMRI analyses, due to spa-
tial overlap between music-selective neural populations and
neural populations with other selectivities (e.g., pitch). To over-
come these challenges, Norman-Haignere et al. (7) used voxel
decomposition to infer a small number of component response
profiles that collectively explained voxel responses throughout
auditory cortex to large set of natural sounds. This approach
makes it possible to disentangle the responses of neural popu-
lations that overlap within voxels and has previously revealed
a component with clear selectivity for music compared with
both other real-world sounds (7) and synthetic control stimuli
matched to music in many acoustic properties (55). These
results have recently been confirmed by intracranial record-
ings, which show individual electrodes with clear selectivity for
music (6). Although Norman-Haignere et al. (7) did not include
actively practicing musicians, many of the participants had
substantial musical training earlier in their lives.

Here, we test whether music selectivity arises only after
explicit musical training. To this end, we probed for music
selectivity in people with almost no musical training. On the
one hand, if explicit musical training is necessary for the ex-
istence of music-selective neural populations, music selec-
tivity should be weak or absent in these nonmusicians. If,
however, music selectivity does not require explicit training
but rather is either innate or arises as a consequence of pas-
sive exposure to music, then we would expect to see robust
music selectivity even in the nonmusicians. A group of
highly trained musicians was also included for comparison.
Using these samemethods, we were also able to test whether
the inferred music-selective neural population responds

strongly to less familiar musical genres (e.g., Balinese game-
lan), and to drum clips with rich rhythm but little melody.

Note that this is not a traditional group comparison study
contrasting musicians and nonmusicians in an attempt to
ascertain whether musical training has any detectable effect
on music selective neural responses, as it would be unrealis-
tic to collect the amount of data that would be necessary for
a direct comparison between groups (see Direct Group
Comparisons of Music Selectivity in the APPENDIX). Rather,
our goal was to ask whether the key properties of music se-
lectivity described in our earlier study are present in each
group when analyzed separately, thus determining whether
or not explicit training is necessary for the emergence of
music selective responses in the human brain.

MATERIALS AND METHODS

Participants

Twenty young adults (14 female, mean = 24.7 yr, SD = 3.8
yr) participated in the experiment: 10 nonmusicians (6
female, mean = 25.8 yr, SD = 4.1 yr) and 10 musicians (8
female, mean = 23.5 yr, SD = 3.3 yr). This number of partici-
pants was chosen because our previous study (7) was able to
infer a music-selective component from an analysis of 10
participants. Although these previous participants were
described as “nonmusicians” (defined as no formal training
in the 5 years preceding the study), many of the participants
had substantial musical training earlier in life. We therefore
used stricter inclusion criteria to recruit 10 musicians and 10
nonmusicians for the current study.

To be classified as a nonmusician, participants were
required to have less than 2 years of total music training,
which could not have occurred either before the age of seven
or within the last 5 years. Out of the 10 nonmusicians in our
sample, eight had zero years of musical training, one had a
single year of musical training (at the age of 20), and one had
2 years of training (starting at age 10). These training meas-
ures do not include any informal “music classes” included in
participants’ required elementary school curriculum, because
(at least in the United States) these classes are typically com-
pulsory, are only for a small amount of time per week (e.g., 1
h), and primarily consist of simple sing-a-longs. Inclusion cri-
teria for musicians were beginning formal training before the
age of seven (56) and continuing training until the current
day. Our sample of 10musicians had an average of 16.30 years
of training (ranging from 11–23 years, SD = 2.52). Details of
participants’musical experience can be found in Table 1.

Nonparametric Wilcoxon rank sum tests indicated that
there were no significant group differences in median age
(musician median = 24.0 yr, SD = 3.3, nonmusician median =
25.0 yr, SD = 4.1, Z = �1.03, P = 0.30, effect size r = �0.23),
postsecondary education (i.e., formal education after high
school; musician median = 6.0 yr, SD = 8.2 yr, nonmusician
median = 6.5 yr, SD = 7.5 yr, Z = �0.08, P = 0.94, effect size
r = �0.02), or socioeconomic status as measured by the
Barrett Simplified Measure of Social Status questionnaire
(BSMSS; Ref. 57; musician median = 54.8, SD = 7.1, nonmusi-
cian median = 53.6, SD = 15.4, Z = 0.30, P = 0.76, effect size r =
0.07). Note that we report the group standard deviations
because this measure is more robust than the interquartile
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rangewith ourmodest sample size of 10 participants per group.
All participants were native English speakers and had normal
hearing (audiometric thresholds<25 dBHL for octave frequen-
cies 250 Hz to 8 kHz), as confirmed by an audiogram adminis-
tered during the course of this study. The study was approved
by Massachusetts Institute of Technology’s (MIT) human par-
ticipants review committee (Committee on the Use of Humans
as Experimental Subjects), and written informed consent was
obtained from all participants.

To validate participants’ self-reported musicianship, we
measured participants’ abilities on a variety of psychoacousti-
cal tasks for which prior evidence suggested that musicians
would outperformnonmusicians, including frequency discrim-
ination, sensorimotor synchronization, melody discrimination,
and “sour note” detection. As predicted, musician participants
outperformed nonmusician participants on all behavioral psy-
choacoustic tasks. See Appendix for more details, and Fig. A1
for participants’ performance on these behavioral tasks.

Study Design

Each participant underwent a 2-h behavioral testing ses-
sion as well as three 2-h fMRI scanning sessions. During the
behavioral session, participants completed an audiogram to
rule out the possibility of hearing loss, filled out question-
naires about their musical experience, and completed a se-
ries of basic psychoacoustic tasks described in the APPENDIX.

Natural Sound Stimuli for fMRI Experiment

Stimuli consisted of 2-s clips of 192 natural sounds. These
sounds included the 165-sound stimulus set used in Ref. 7,
which broadly sampled frequently heard and recognizable
sounds from everyday life. Examples can be seen in Fig. 1A. This
set of 165 sounds was supplemented with 27 additional music
and drumming clips from a variety of musical cultures, so that

we could examine responses to rhythmic features of music, as
well as compare responses to more versus less familiar musical
genres. Stimuli were ramped on and off with a 25-ms linear
ramp. During scanning, auditory stimuli were presented over
MR-compatible earphones (Sensimetrics S14) at 75 dB SPL.

An online experiment (via Amazon’s Mechanical Turk)
was used to assign a semantic category to each stimulus, in
which 180 participants (95 females; mean age = 38.8 yr, SD =
11.9 yr) categorized each stimulus into one of 14 different cat-
egories. The categories were taken from Ref. 7, with three
additional categories (“non-Western instrumental music,”
“non-Western vocal music,” “drums”) added to accommo-
date the additionalmusic stimuli used in this experiment.

A second Amazon Mechanical Turk experiment was run
to ensure that American listeners were indeed less familiar
with the non-Western music stimuli chosen for this experi-
ment, but that they still perceived the stimuli as “music.” In
this experiment, 188 participants (75 females; mean age =
36.6 yr, SD = 10.5 yr) listened to each of the 62 music stimuli
and rated them based on (1) how “musical” they sounded, (2)
how “familiar” they sounded, (3) how much they “liked” the
stimulus, and (4) how “foreign” they sounded.

fMRI Data Acquisition and Preprocessing

Similar to the design of Ref. 7, sounds were presented during
scanning in a “mini-block design,” in which each 2-s natural
soundwas repeated three times in a row. Soundswere repeated
because we have found this makes it easier to detect reliable
hemodynamic signals. We used fewer repetitions than in our
prior study (3 vs. 5), because we wanted to test a larger number
of sounds and because we observed similarly reliable responses
using fewer repetitions in pilot experiments. Each stimulus
was presented in silence, with a single fMRI volume collected
between each repetition [i.e., “sparse scanning” (58)]. To

Table 1. Details of participants’ musical backgrounds and training, as measured by a self-report questionnaire

Subject No. Instrument

Age of

Onset (Yr)

Years of

Lessons

Years of Regular

Practice

Years of

Training

Hours of Weekly

Practice

Hours of Daily

Music Listening

Nonmusicians 1 0 0 0 0 0
2 20 1 0 1 0 2
3 0 0 0 0 0.25
4 0 0 0 0 5
5 0 0 0 0 1
6 0 0 0 0 1.5
7 10 1.5 0 1.5 0 1
8 0 0 0 0 0.1
9 0 0 0 0 0.5
10 0 0 0 0 5

Mean 24.4 0.3 0 0.3 0 1.64

Musicians 11 Violin 7 11 11 11 2 2
12 Piano, French horn 5 7 18 12 6 4
13 Piano, Bass 6 12 18 18 2 2
14 Piano 3 15 15 15 2 2.5
15 Piano, Violin, Viola 5 17 19 20 3 4
16 Piano, Flute 5 13 13 13 12 3
17 Flute 7 12 13 15 15 3
18 Piano, Cello, Flute 4 19 15 18 25 1
19 Violin 3 18 18 18 4 10
20 Violin, Clarinet 4 13 8 23 4 5

Mean 5.2 13.7 14.8 16.3 7.1 3.65

Grand mean 14.8 7 7.4 8.3 3.55 2.64
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encourage participants to pay attention to the sounds, either
the second or third repetition in each “mini-block” was 12 dB
quieter (presented at 67 dB SPL), and participants were
instructed to press a button when they heard this quieter
sound (Fig. 1B). Overall, participants performed well on this
task (musicians: mean = 92.06%, SD = 5.47%; nonmusicians:
mean = 91.47%, SD = 5.83%; no participant’s average perform-
ance across runs fell below 80%). Each of the three scanning
sessions consisted of sixteen 5.5-min runs, for a total of 48
functional runs per participant. Each run consisted of 24 stim-
ulusmini-blocks and five silent blocks during which no sounds

were presented. These silent blocks were the same duration as
the stimulus mini-blocks and were distributed evenly through-
out each run, providing a baseline. Each specific stimulus was
presented in two mini-blocks per scanning session, for a total
of six mini-block repetitions per stimulus over the three scan-
ning sessions. Stimulus order was randomly permuted across
runs and across participants.

MRI data were collected at the Athinoula A. Martinos
Imaging Center of the McGovern Institute for Brain Research
at MIT, on a 3T Siemens Prisma with a 32-channel head coil.
Each volume acquisition lasted 1 s, and the 2-s stimuli were

1. Man speaking
2. Flushing toilet
3. Pouring liquid
4. Tooth brushing
5. Woman speaking
6. Car accelerating
7. Biting and chewing
8. Laughing
9. Typing
10. Car engine running

11. Running water
12. Breathing
13. Keys jangling
14. Dishes clanking
15. Ringtone
16. Microwave
17. Dog barking
18. Walking (hard surface)
19. Road traffic
20. Zipper

21. Cellphone vibrating
22. Water dripping
23. Scratching
24. Car windows
25. Telephone ringing
26. Chopping food
27. Telephone dialing
28. Girl speaking
29. Car horn
30. Writing

31. Computer startup
32. Background speech
33. Songbird
34. Pouring water
35. Pop song
36. Water boiling
37. Guitar
38. Coughing
39. Crumpling paper
40. Siren

41. Splashing water
42. Computerized speech
43. Alarm clock
44. Walking with heels
45. Vacuum
46. Wind
47. Boy speaking
48. Chair rolling
49. Rock Song
50. Door knocking
…

A Stimulus Set of Commonly Heard Natural Sounds

B Scanning Procedure and Task Structure

C Voxel Decomposition Procedure
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Figure 1. Experimental design and voxel decomposition method. A: fifty examples from the original set of 165 natural sounds used in Ref. 7 and in
the current study, ordered by how often participants reported hearing them in daily life. An additional 27 music stimuli were added to this set of 165 for
the current experiment. B: scanning paradigm and task structure. Each 2-s sound stimulus was repeated three times consecutively, with one repetition
(the second or third) being 12 dB quieter. Subjects were instructed to press a button when they detected this quieter sound. A sparse scanning
sequence was used, in which one fMRI volume was acquired in the silent period between stimuli. C: diagram depicting the voxel decomposition method,
reproduced from Ref. 7. The average response of each voxel to the 192 sounds is represented as a vector, and the response vector for every voxel from
all 20 subjects is concatenated into a matrix (192 sounds � 26,792 voxels). This matrix is then factorized into a response profile matrix (192 sounds � N
components) and a voxel weight matrix (N components� 26,792 voxels).
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presented during periods of silence between each acquisi-
tion, with a 200-ms buffer of silence before and after stimu-
lus presentation. As a consequence, one brain volume was
collected every 3.4 s (1 s þ 2 s þ 0.2�2 s; TR = 3.4 s, TA = 1.02
s, TE = 33 ms, 90 degree flip angle, 4 discarded initial acquis-
itions). Each functional acquisition consisted of 48 roughly
axial slices (oriented parallel to the anterior-posterior com-
missure line) covering the whole brain, each slice being 3
mm thick and having an in-plane resolution of 2.1 � 2.1mm
(96 � 96 matrix, 0.3-mm slice gap). A simultaneous multi-
slice (SMS) acceleration factor of 4 was used to minimize ac-
quisition time (TA = 1.02 s). To localize functional activity, a
high-resolution anatomical T1-weighted image was obtained
for every participant (TR = 2.53 s, voxel size: 1 mm3, 176 sli-
ces, 256� 256matrix).

Preprocessing and data analysis were performed using FSL
software and customMatlab scripts. Functional volumes were
motion-corrected, slice-time-corrected, skull-stripped, line-
arly detrended, and aligned to each participant’s anatomical
image (using FLIRT and BBRegister; Refs. 59, 60). Motion cor-
rection and function-to-anatomical registration was done sep-
arately for each run. Preprocessed data were then resampled
to the cortical surface reconstruction computed by FreeSurfer
(61) and smoothed on the surface using a 3-mm full-width
half-maximum (FWHM) kernel to improve signal-to-noise ra-
tio (SNR). The data were then downsampled to a 2-mm iso-
tropic grid on the FreeSurfer-flattened cortical surface.

Next, we estimated the response to each of the 192 stimuli
using a general linear model (GLM). Each stimulus mini-block
was modeled as a boxcar function convolved with a canonical
hemodynamic response function (HRF). The model also
included six motion regressors and a first-order polynomial
noise regressor to account for linear drift in the baseline signal.
Note that this analysis differs from our prior paper (7), in which
signal averaging was used in place of a GLM. We made this
change because blood oxygen level-dependent (BOLD) res-
ponses were estimatedmore reliably using anHRF-based GLM,
potentially due to the use of shorter stimulus blocks causing
more overlap between BOLD responses to different stimuli.

Voxel Selection

The first step of this analysis method is to determine
which voxels serve as input to the decomposition algorithm.
All analyses were carried out on voxels within a large ana-
tomical constraint region encompassing bilateral superior
temporal and posterior parietal cortex (Fig. A2), as in Ref. 7.
In practice, the vast majority of voxels with a robust and reli-
able response to sound fell within this region (Fig. A3), which
explains why our results were very similar with and without
this anatomical constraint (Fig. A4). Within this large ana-
tomical region, we selected voxels that met two criteria.
First, they displayed a significant (P < 0.001, uncorrected)
response to sound (pooling over all sounds compared with
silence). This consisted of 51.45% of the total number of vox-
els within our large constraint region. Second, they produced
a reliable response pattern to the stimuli across scanning ses-
sions. Note that rather than using a simple correlation to
determine reliability, we used the equation from Ref. 7 to
measure the reliability across split halves of our data. This
reliability measure differs from a Pearson correlation in that

it assigns high values to voxels that respond consistently to
sounds and does not penalize them even if their response
does not vary much between sounds, which is the case for
many voxels within primary auditory cortex:

r ¼ 1� k v1 � projv2v1k2
k v1k2

projv2v1 ¼ v2
v2T

k v2k2 v1

 !

where v1 and v2 indicate the vector of beta weights from a
single voxel for the 192 sounds, estimated separately for the
two halves of the data (v1 = first three repetitions from runs
1–24, v2 = last three repetitions from runs 25–48), and || || is
the L2 norm. Note that these equations differ from Eq. 1 and
2 in Ref. 7, because the equations as reported in that paper
contained a typo: the L2-norm terms were not squared. We
used the same reliability cutoff as in our prior study (r> 0.3).
Of the sound-responsive voxels, 54.47% of them also met the
reliability criteria. Using these two selection criteria, the me-
dian number of voxels per participant = 1,286, SD = 254 (Fig.
A2A). The number of selected voxels did not differ signifi-
cantly between musicians (median = 1,216, SD = 200) and
nonmusicians (median = 1,341, SD = 284; Z = �1.40, P = 0.16,
effect size r = �0.31, two-tailed Wilcoxon rank sum test), and
the anatomical location of the selected voxels was largely
similar across groups (Fig. A2B). When visualizing each
group's data on the cortical surface (Fig. 3, C and D), we
chose which voxels to include by first averaging voxel
responses across participants within each group, and then
applying the same selection criteria to the averaged data.

Unlike our prior study, we collected whole brain data in
this experiment and thus were able to repeat our analyses
without any anatomical constraint. Although a few addi-
tional voxels outside of the mask domeet our selection crite-
ria (Fig. A3), the resulting components are very similar to
those obtained using the anatomical mask, both in response
profiles (Fig. A4A; correlations ranging from r = 0.91 to r >

0.99, SD = 0.03) and voxel weights (Fig. A4B).

Decomposition Algorithm

The decomposition algorithm approximates the response of
each voxel (v1) as the weighted sum of a small number of com-
ponent response profiles that are shared across voxels (Fig. 1B):

vi �
XK

k¼1

rkwk;i

where rk represents the kth component response profile that
is shared across all voxels, wk,i represents the weight of com-
ponent k in voxel i, andK is the total number of compon-ents.

We concatenated the selected voxel responses from all
participants into a single data matrix D (S sounds � V vox-
els). We then approximated the data matrix as the product of
two smaller matrices: 1) a response matrix R (S sounds �
K components) containing the response profile of all inferred
components to the sound set, and 2) a weight matrix W
(K components � V voxels) containing the contribution of
each component response profile to each voxel. Using matrix
notation this yields:
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D � RW

The method used to infer components was described in
detail in our prior paper (7) and code is available online
(https://github.com/snormanhaignere/nonparametric-ica). The
method is similar to standard algorithms for independent com-
ponents analysis (ICA) in that it searches among themany pos-
sible solutions to the factorization problem for components
that have a maximally non-Gaussian distribution of weights
across voxels (the non-Gaussianity of the components inferred
in this study can be seen in Fig. A5). The method differs from
most standard ICA algorithms in that it maximizes non-
Gaussianity by directly minimizing the entropy of the compo-
nent weight distributions across voxels as measured by a histo-
gram, which is feasible due to the large number of voxels.
Entropy is a natural measure to minimize because the
Gaussian distribution has maximal entropy. The algorithm
achieves this goal in two steps. First, PCA is used to whiten and
reduce the dimensionality of the data matrix. This was imple-
mented using the singular value decomposition:

D � UkSkVk

where Uk contains the response profiles of the top K princi-
pal components (192 sounds � K components), Vk contains
the whitened voxel weights for these components (K compo-
nents� 26,792 voxels), and Sk is a diagonalmatrix of singular
values (K � K). The number of components (K) was chosen
by measuring the amount of voxel response variance
explained by different numbers of components and the ac-
curacy of the components in predicting voxel responses in
left-out data. Specifically, we chose a value of K that bal-
anced these two measures such that the set of components
explained a large fraction of the voxel response variance
(which increases monotonically with additional compo-
nents) but still maintained good prediction accuracy (which
decreases once additional components begin to cause over-
fitting). In practice, the plateau in the amount of explained
variance coincided with the peak of the prediction accuracy.

The principal component weight matrix is then rotated to
maximize the negentropy (J) summed across components:

T̂ ¼ argmax
T

XN
c¼1

J W c; :½ �� �
;whereW ¼ TVk

where W is the rotated weight matrix (K � 26,792), T is an
orthonormal rotation matrix (K � K), and W[c,:] is the cth
row of W. We estimated entropy using a histogram-based
method (62) applied to the voxel weight vector for each com-
ponent (W[c,:]), and defined negentropy as the difference in
entropy between the empirical weight distribution and a
Gaussian distribution of the samemean and variance:

J yð Þ ¼ H ygaussð Þ � H yð Þ
The optimization is performed by iteratively rotating pairs

of components to maximize negentropy, which is a simple
algorithm that does not require the computation of gradients
and is feasible for small numbers of components [the num-

ber of component pairs grows as
K
2

� �
].

This voxel decomposition analysis was carried out on three
different data sets: 1) on voxels from the 10 musicians only, 2)

on voxels from the 10 nonmusicians only, and 3) on voxels
from all 20 participants. We note that the derivation of a set of
components using this method is somewhat akin to a fixed-
effects analysis, in that it concatenates participants’ data and
infers a single set of components to explain the data from all
participants at once. However, the majority of the analyses
that we carried out using these components (as described in
the following paragraphs) involve deriving participant-spe-
cific metrics and investigating the consistency of effects
across participants.

Measuring Component Selectivity

To quantify the selectivity of the music component, we
measured the difference in mean response profile magnitude
betweenmusic and nonmusic sounds, divided by their pooled
standard deviation (Cohen’s d). This measure provides a mea-
sure of the separability of the two sound categories within the
response profile. We measured Cohen’s d for several different
pairwise comparisons of sound categories. In each case, the
significance of the separation of the two stimulus categories
was determined using a permutation test (permuting stimu-
lus labels between the two categories 10,000 times). This null
distribution was then fit with a Gaussian, a P-value from
which was assigned to the observed value of Cohen’s d.

Anatomical Component Weight Maps

To visualize the anatomical distribution of component
weights, individual participants’ component weights were
projected onto the cortical surface of the standard FsAverage
template, and a random effects analysis (t test) was per-
formed to determine whether component weights were sig-
nificantly greater than zero across participants at each voxel
location. To visualize the component weight maps sepa-
rately for musicians and nonmusicians, a separate random
effects analysis was run for the participants in each group.
To correct for multiple comparisons, we adjusted the false
discovery rate [FDR, c(V) = 1, q = 0.05] using the method
from Genovese et al. (63).

We note that the details of the analyses and plotting con-
ventions used for visualizing component weight maps differ
from those of our previous study (7). These differences
include the process involved in aggregating weights across
subjects (Norman-Haignere et al. smoothed individual par-
ticipants’ data and then averaged across participants,
whereas there was no smoothing or averaging across partici-
pants in the current study), the use of different measures of
statistical significance of the component weights (a random
effects analysis across subjects in the current study, a permu-
tation test across sounds inNorman-Haignere et al.), and dif-
ferent thresholding (an FDR threshold of q = 0.05 in the
current study, whereas the component weight maps in
Norman-Haignere et al. showed the entire weight distribu-
tion and were not thresholded). We made these changes in
the current study so that we could ask about the consistency
of effects across participants and better visualize which vox-
els’ component weights passed standard significance thresh-
olds. However, we note that these changes cause the maps
we regenerated from the Ref. 7 data (Fig. 3, C and D) to look
somewhat different from those shown in the original paper
(replotted in Fig. 5A).
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Component Voxel Weights within Anatomical ROIs

In addition to projecting the weight distributions on
the cortical surface, we summarized their anatomical dis-
tribution by measuring the mean component voxel
weight within a set of standardized anatomical ROIs. To
create these ROIs, a set of 15 parcels were selected from an
atlas (64) to fully encompass the superior temporal plane
and superior temporal gyrus (STG). To identify a small set
of ROIs suitable for evaluating the music component
weights in our current study, we superimposed these ana-
tomical parcels onto the weights of the music component
from our previously published study (7, shown in Fig. 5A),
and then defined ROIs by selecting sets of the anatomi-
cally defined parcels that best correspond to regions of
high vs. low music component weights (Fig. 5B). The
mean component weights within these ROIs were com-
puted separately for each participant and then averaged
across participants for visualization purposes (e.g., Fig.
5C). We then ran a 4 (ROI) � 2 (hemisphere) repeated-
measures ANOVA on these weights. A separate ANOVA
was run for musicians and nonmusicians, to evaluate
each group separately.

To compare the magnitude of the main effect of ROI with
the main effect of hemisphere, we bootstrapped across par-
ticipants, resampling participants 1,000 times. We reran the
repeated-measures ANOVA on each sample, each timemeas-
uring the difference in the effect size for the two main
effects, i.e., gpROI

2
– gpHemi

2. We then calculated the 95%
confidence interval (CI) of this distribution of effect size dif-
ferences. The significance of the difference in main effects
was evaluated by determining whether or not each group’s
95% CI for the difference overlapped with zero.

In addition, we ran a Bayesian repeated-measures ANOVA
on these same data, implemented in JASP v.0.13.1 (78), using
the default prior (Cauchy distribution, r = 0.5). Effects are
reported as the Bayes Factor for inclusion (BFinc) of each
main effect and/or interaction, which is the ratio between
the likelihood of the data given the model including the
effect in question vs. the likelihood of the next simpler
model without the effect in question.

RESULTS
Our primary question was whether cortical music selectiv-

ity is present in people with almost no musical training. To
that end, we scanned 10 people with almost no musical train-
ing (Table 1) and used voxel decomposition to infer a small set
of response components that could explain the observed voxel
responses. We also included another set of 10 participants
with extensive musical training for comparison. First, we
asked whether the response components across all of auditory
cortex reported by Norman-Haignere et al. (7) replicate in
both nonmusicians and highly trained musicians when ana-
lyzed separately. Second, we examined the detailed character-
istics of music selectivity in particular, to test whether its
previously documented key properties are present in both
nonmusicians and highly trained musicians. Third, we took
advantage of our expanded stimulus set to look at additional
properties of music selectivity, such as the response to musi-
cal genres that are less familiar to ourWestern participants.

Replication of Functional Components of Auditory
Cortex from Norman-Haignere et al. in Musicians and in
Nonmusicians

Replication of previous voxel decomposition results.
We first tested the extent to which we would replicate the
overall functional organization of auditory cortex reported
by Norman-Haignere et al. (7) in people with almost no mu-
sical training, using the voxel decomposition method intro-
duced in that paper. We also performed the same analysis on
a group of highly trained musicians. Specifically, in every
participant, we measured the response of voxels within au-
ditory cortex to 192 natural sounds (Fig. 1, A and B; the av-
erage response of each voxel to each sound was estimated
using a standard hemodynamic response function). Then,
separately for nonmusicians and musicians, we used voxel
decomposition to model the response of these voxels as
the weighted sum of a small number of canonical response
components (Fig. 1C). This method factorizes the voxel
responses into two matrices: one containing the compo-
nents’ response profiles across the sound set and the sec-
ond containing voxel weights specifying the extent to
which each component contributes to the response of each
voxel.

Since the only free parameter in this analysis is the num-
ber of components recovered, the optimal number of compo-
nents was determined by measuring the fraction of the
reliable response variance the components explain. In the
previous study (7), six components were sufficient to explain
over 80% of the reliable variance in voxel responses. We
found the same to be true in both participant groups of the
current study: six components were needed to optimally
model the data from the 10 participants in separate analyses
of each group. The six components explained 88.56% and
88.09% of the reliable voxel response variance for nonmusi-
cians andmusicians, respectively, after which the amount of
explained variance for each additional component plateaued
(Fig. A6).

Next, we examined the similarity of the components
inferred from nonmusicians to the components from our
previous study, comparing their responses to the 165 sounds
common to both. Because the order of the components
inferred using ICA holds no significance, we first used the
Hungarian algorithm (65) to optimally reorder the compo-
nents, maximizing their correlation with the components
from our previous study. For comparisons of the response
profile matrices of two groups of subjects, we matched com-
ponents using the weight matrices; conversely, for compari-
sons involving the voxel weights, we matched components
using the response profile matrices (see MATERIALS AND

METHODS). In practice, the component matches were identi-
cal regardless of which matrices were used for matching. We
also conducted the same analysis for the musicians, compar-
ing the components derived from their data with those in
our previous study.

For both nonmusicians and musicians, corresponding
pairs of components were highly correlated with those
from our previous study, with r values for nonmusicians’
components ranging from 0.63 to 0.99 (Fig. 2, A and B)
and from 0.66 to 0.99 for musicians’ components (Fig. 2, C
and D).
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Component response profiles and selectivity for sound
categories.
Four of the six components from our previous study cap-
tured expected acoustic properties of the sound set (e.g., fre-
quency, spectrotemporal modulation; see Fig. A8A for
analyses relating the responses of these components to audio
frequency and spectrotemporal modulation) and were con-
centrated in and around primary auditory cortex (PAC), con-
sistent with prior results (55, 66–72). The two remaining
components responded selectively to speech (Fig. 3A, left col-
umn) and music (Fig. 3B, left column), respectively, and were
not well accounted for using acoustic properties alone (Fig.
A8A). The corresponding components inferred from nonmu-
sicians (Fig. 3, A and B, middle columns) and musicians (Fig.
3,A and B, right columns) also show this category selectivity.

We note that the mean response profile magnitude for the
music-selective component differed between groups, being
lower in musicians than nonmusicians (Fig. 3B). This effect
seems unlikely to be a consequence of musical training
because the mean response magnitude was lower still in the
previous study, whose participants had substantially less musi-
cal training than the musicians in the current study. Further,
we have found that component response profile magnitude
tends to vary depending on the method used to infer the com-
ponents. For example, using a probabilistic parametric matrix
factorization model instead of the simpler, nonparamet-
ric method presented throughout this paper resulted in

components that had different mean responses despite other-
wise being very similar to those obtained via ICA (see
Appendix for details of the parametric model, and Fig. A10 for
the component response profiles inferred using this method).
Moreover, the information about music contained in the
response as measured by the separability of music versus non-
music sounds (Cohen’s d) is independent of this overall mean
response (see Fig. 4). For these reasons, we do not read much
into this apparent difference between groups.

We also found similarities in the anatomical distribution
of speech- and music-selective component weights between
the previous study and both groups in the current study. The
weights for the speech-selective component were concen-
trated in the middle portion of the superior temporal gyrus
(midSTG, Fig. 3C), as expected based on previous reports
(73–75). In contrast, the weights for the music-selective com-
ponent were most prominent anterior to PAC in the planum
polare, with a secondary cluster posterior to PAC in the pla-
num temporale (Fig. 3D) (3, 7, 41, 48, 52, 76, 77).

Together, these findings show that we are able to twice
replicate the overall component structure underlying audi-
tory cortical responses described in our previous study
(once for nonmusicians and once for musicians). Further,
both nonmusicians and musicians show category-selective
components that are largely similar to those in our previous
study, including a single component that appears to be selec-
tive for music.

A Response Profiles: Previous Study vs. Non-Musicians

C  Response Profiles: Previous Study vs. Musicians
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Figure 2. Replication of components from Ref. 7. A: scatterplots showing the correspondence between the component response profiles from the previous
study (n = 10, y-axis) and those inferred from nonmusicians (n = 10, x-axis). The 165 sounds common to both studies are colored according to their semantic
category, as determined by raters on Amazon Mechanical Turk. Note that the axes differ slightly between groups to make it possible to clearly compare
the pattern of responses across sounds independent of the overall response magnitude. B: correlation matrix comparing component response profiles
from the previous study (y-axis) and those inferred from nonmusicians (n = 10, x-axis). C and D: same as A and B but for musicians. Comp., component.
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Characterizing Music Selectivity in Nonmusicians and
Musicians Separately

We next asked whether nonmusicians exhibited the signa-
ture response characteristics of music selectivity docu-
mented in our prior paper: 1) the music component response
profile showed a high response to both instrumental and
vocal music and a low response to all other categories,
including speech; 2) music component voxel weights were
highest in anterior superior temporal gyrus (STG), with indi-
cations of a secondary concentration of weights in posterior
STG, and low weights in both PAC and lateral STG; and 3)
music component voxel weights had a largely bilateral distri-
bution. We examined whether each of these properties was

present in the components separately inferred from nonmu-
sicians andmusicians.

Response profiles show selectivity for both instrumental
and vocal music.
The defining feature of the music-selective component from
Ref. 7 was that its response profile showed a very high response
to stimuli that had been categorized by humans as “music,”
including both instrumental music and music with vocals, rela-
tive to nonmusic stimuli, including speech (Fig. 3B, left column).
The category-averaged responses of the music-selective compo-
nent showed similar effects in nonmusicians and highly trained
musicians (Fig. 3B, center and right columns).
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Figure 3. Comparison of speech-selective and music-selective components for participants from previous study (n = 10), nonmusicians (n = 10), and musi-
cians (n = 10). A and B: component response profiles averaged by sound category (as determined by raters on Amazon Mechanical Turk). A: the speech-
selective component responds highly to speech and music with vocals, and minimally to all other sound categories. Shown separately for the previous
study (left), nonmusicians (middle), and musicians (right). Note that the previous study contained only a subset of the stimuli (165 sounds) used in the current
study (192 sounds) so some conditions were not included and are thus replaced by a gray rectangle in the plots and surrounded by a gray rectangle in the
legend. B: the music-selective component (right) responds highly to both instrumental and vocal music, and less strongly to other sound categories. Note
that “Western Vocal Music” stimuli were sung in English. We note that the mean response profile magnitude differs between groups, but that selectivity as
measured by separability of music and nonmusic is not affected by this difference (see text for explanation). For both A and B, error bars plot one standard
error of the mean across sounds from a category, computed using bootstrapping (10,000 samples). C: spatial distribution of speech-selective component
voxel weights in both hemispheres. D: spatial distribution of music-selective component voxel weights. Color denotes the statistical significance of the
weights, computed using a random effects analysis across subjects comparing weights against 0; P values are logarithmically transformed (�log10[P]). The
white outline indicates the voxels that were both sound-responsive (sound vs. silence, P < 0.001 uncorrected) and split-half reliable (r > 0.3) at the group
level (see MATERIALS AND METHODS for details). The color scale represents voxels that are significant at FDR q = 0.05, with this threshold computed for each
component separately. Voxels that do not survive FDR correction are not colored, and these values appear as white on the color bar. The right hemisphere
(bottom rows) is flipped to make it easier to visually compare weight distributions across hemispheres. Note that the secondary posterior cluster of music
component weights is not as prominent in this visualization of the data from Ref. 7 due to the thresholding procedure used here; we found in additional
analyses that a posterior cluster emerged if a more lenient threshold is used. FDR, false discovery rate; LH, left hemisphere; RH, right hemisphere.
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To quantify this music selectivity, we measured the differ-
ence in mean response profile magnitude between music and
nonmusic sounds, divided by their pooled standard deviation
(Cohen’s d). So that we could compare across our previous
and current experiments, this was done using the set of 165
sounds that were common to both studies. We measured
Cohen’s d separately for several different pairwise compari-
sons: 1) instrumental music vs. speech stimuli, 2) instrumen-
tal music vs. other nonmusic stimuli, 3) vocal music vs.
speech stimuli, and 4) vocal music vs. other nonmusic stimuli
(Fig. 4). In each case, the significance of the separation of the
two stimulus categories was determined using a nonparamet-
ric test permuting stimulus labels 10,000 times. All four of
these statistical comparisons were highly significant for non-
musicians when analyzed separately (all Ps < 10�5, Table 2).
This result shows that the music component is highly music-
selective in nonmusicians, in that it responds highly to both
instrumental and vocal music, and significantly less to both
speech and other nonmusic sounds. Similar results were also
found for musicians (all Ps < 10�5, Table 2). We note that the

selectivity of the music component inferred from nonmusi-
cians seems to be slightly lower than that of the component
inferred from musicians, but we are not sufficiently powered
to directly test for differences in selectivity between groups
(see Direct Group Comparisons of Music Selectivity in the
Appendix). It’s also true that the values of Cohen’s d tend
to be somewhat larger for the music component from
Ref. 7 than for the components inferred from both
groups of participants in the current study. It is not clear
why this is the case, but it is more likely to be due to
slight methodological differences between the experi-
ments than an effect of musical training, because the
participants in our previous study had intermediate lev-
els of musical training.

Music component weights concentrated in anterior and
posterior STG.
A second notable property of themusic component fromRef. 7
was that the weights were concentrated in distinct regions of
nonprimary auditory cortex, with the most prominent cluster

Table 2. Results of pairwise comparisons between stimulus categories shown in Fig. 4

Subject Group Pairwise Comparison Stimulus Category Mean SD Cohen’s d P value

Nonmusicians 1 Instrumental music 0.78 0.13
1.58 2.14E-06

Speech 0.59 0.11

2 Instrumental music 0.78 0.13
1.51 1.88E-10

Other 0.57 0.15

3 Vocal music 0.85 0.08
2.68 4.54E-11

Speech 0.59 0.11

4 Vocal music 0.85 0.08
2.33 1.87E-12

Other 0.57 0.15

Musicians 1 Instrumental music 0.72 0.22
1.92 1.19E-08

Speech 0.34 0.16

2 Instrumental music 0.72 0.22
2.16 7.40E-20

Other 0.27 0.19

3 Vocal music 0.72 0.12
2.61 8.38E-11

Speech 0.34 0.16

4 Vocal music 0.72 0.12
2.81 3.62E-18

Other 0.27 0.19

The significance of the separation of each pair of stimulus categories was determined using a nonparametric test permuting stimulus
labels 10,000 times. Stimuli consisted of instrumental music (n = 22), vocal music (n = 11), speech (n = 17), and other (n = 115).
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Figure 4. Separability of sound categories in music-selective components of nonmusicians and musicians. Distributions of 1) instrumental music stimuli, 2)
vocal music stimuli, 3) speech stimuli, and 4) other stimuli within the music component response profiles from our previous study (n = 10; left, gray shading),
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(n = 17), and other (n = 115). See Table 2 for results of pairwise comparisons indicated by brackets; ����Significant at P< 0.0001, two-tailed.
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located in anterior STG, and a secondary cluster located in pos-
terior STG (at least in the left hemisphere). Conversely, music
component weights were low in primary auditory cortex (PAC)
and intermediate in nonprimary lateral STG (see Fig. 5A).

To assess whether these anatomical characteristics were
evident for the music components inferred from our nonmu-
sician and musician participants, we superimposed standar-
dized anatomical parcels (64) on the data and defined

anatomical regions of interest (ROIs) by selecting four sets of
these anatomically defined parcels that best corresponded to
anterior nonprimary, primary, and lateral nonprimary audi-
tory cortex (Fig. 5B). We then calculated the average music
component weight for each individual participant within
each of these four anatomical ROIs, separately for each hemi-
sphere (Fig. 5C). This was done separately for nonmusicians
andmusicians, using their respectivemusic components.
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Figure 5. Quantification of bilateral anterior/posterior concentration of voxel weights for the music-selective components inferred in nonmusicians and
musicians separately. A: music component voxel weights, reproduced from Ref. 7. See MATERIALS AND METHODS for details concerning the analysis and plot-
ting conventions from our previous paper. B: fifteen standardized anatomical parcels were selected from Ref. 64, chosen to fully encompass the superior
temporal plane and superior temporal gyrus (STG). To come up with a small set of ROIs to use to evaluate the music component weights in our current
study, we superimposed these anatomical parcels onto the weights of the music component from our previously published study (7), and then defined
ROIs by selecting sets of the anatomically defined parcels that correspond to regions of high (anterior nonprimary, posterior nonprimary) vs. low (primary,
lateral nonprimary) music component weights. The anatomical parcels that comprise these four ROIs are indicated by the brackets and outlined in black on
the cortical surface.C: mean music component weight across all voxels in each of the four anatomical ROIs, separately for each hemisphere, and separately
for our previous study (n = 10; left, gray shading), nonmusicians (n = 10; center, green shading), and musicians (n = 10; right, blue shading). A repeated-meas-
ures ROI� hemisphere ANOVAwas conducted for each group separately. Error bars plot one standard error of themean across participants. Brackets rep-
resent pairwise comparisons that were conducted between ROIs with expected high vs. low component weights, averaged over hemisphere. See Table 3
for full results of pairwise comparisons, and Fig. A9 for component weights from all 15 anatomical parcels. �Significant at P< 0.05, two-tailed; ��Significant
at P< 0.01, two-tailed; ���Significant at P< 0.001, two-tailed; ����Significant at P< 0.0001, two-tailed. Note that because of our prior hypotheses and the
significance of the omnibus F test, we did not correct for multiple comparisons. LH, left hemisphere; RH, right hemisphere; ROI, region of interest.
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For each group, a 4 (ROI) � 2 (hemisphere) repeated meas-
ures ANOVA on these mean component weights showed a sig-
nificant main effect of ROI for both nonmusicians [F(3,27) =
50.12, P = 3.63e-11, g2

p = 0.85] and musicians [F(3,27) = 19.62,
P = 5.90e-07, g2

p = 0.69]. Pairwise comparisons showed that for
each group, component weights were significantly higher in
the anterior and posterior nonprimary ROIs than both the pri-
mary and lateral nonprimary ROIs when averaging over hemi-
spheres (Table 3; nonmusicians: all Ps < 0.004, musicians: all
Ps< 0.03).

These results show that in both nonmusicians and musi-
cians, music selectivity is concentrated in anterior and pos-
terior STG and present to a lesser degree in lateral STG, and
onlyminimally in PAC.

Music component weights are bilaterally distributed.
A third characteristic of the previously described music selec-
tivity is that it was similarly distributed across hemispheres,
with no obvious lateralization (7). The repeated-measures
ANOVA described in the previous section showed no evi-
dence of lateralization in either nonmusicians or musicians
[Fig. 5C; nonmusicians: F(1,9) = 0.15, P = 0.71, g2

p = 0.02; musi-
cians: F(1,9) = 2.43, P = 0.15, g2

p = 0.21]. Furthermore, for both
groups, the effect size of ROI within a hemisphere was signifi-
cantly larger than the effect size of hemisphere [measured by
bootstrapping across participants to get 95% CIs around
the difference in the effect size for the two main effects, i.e.,
gpROI

2
– gpHemi

2; the significance of the difference in main
effects was evaluated by determining whether or not each
group’s 95% CI for the difference overlapped with zero: non-
musicians’ CI: (0.37, 0.89), musicians’ CI: (0.16, 0.82)].

Because the lack of a significant main effect of hemisphere
could be due to insufficient statistical power, we ran a Bayesian
version of the repeated-measures ANOVA, which allows us to
quantify evidence both for and against the null hypothesis that
there was not a main effect of hemisphere. We used JASP (78),
with its default prior (Cauchy distribution, r = 0.5), and com-
puted the Bayes Factor for inclusion of each main effect and/or
interaction (the ratio between the likelihood of the data given
the model including the effect in question vs. the likelihood of

the next simpler model without the effect in question, with val-
ues further from 1 providing stronger evidence in favor of one
model or the other). We found no evidence for a main effect of
hemisphere (Bayes factor of inclusion, BFincl = 0.77 for musi-
cians, suggestive of weak evidence against inclusion; BFincl =
0.24 for nonmusicians, suggestive of moderate evidence against
inclusion, using the guidelines suggested by Ref. 79). By con-
trast, the main effect of ROI was well supported (BFincl for ROI
for nonmusicians = 1.02e17, and for musicians = 6.11e12, both
suggestive of extreme evidence in favor of inclusion).

Neither group showed a significant ROI � hemisphere
interaction [nonmusicians: F(3,27) = 1.48, P = 0.24, g2

p = 0.14;
musicians: F(3,27) = 2.24, P = 0.11, g2

p = 0.20]. This was also
the case for the Bayesian repeated-measures ANOVA, in
which the Bayes Factors for the interaction between ROI and
hemisphere provided weak evidence against including the
interaction term in the models (BFincl = 0.38 for nonmusi-
cians, BFincl = 0.36 for musicians).

The fact that the music component inferred from nonmusi-
cians exhibits all of the previously described features of music
selectivity (7) suggests that explicitmusical training is not neces-
sary for a music-selective neural population to arise in the
human brain. In addition, the results from musicians suggest
that that the signature properties of music selectivity are not
drastically altered by extensive musical experience. Both groups
exhibited a single response component selective for music. And
in both groups, this selectivitywas present for both instrumental
and vocal music, was localized to anterior and posterior nonpri-
mary auditory cortex, andwas present bilaterally.

New Insights into Music Selectivity: Music-Selective
Regions of Auditory Cortex Show High Responses to
Drum Rhythms and Unfamiliar Musical Genres

Because our experiment utilized a broader stimulus set
than the original study (7), we were able to use the inferred
components to ask additional questions about the effect of
experience on music selectivity, as well as gain new insights
into the nature of cortical music selectivity. The set of natu-
ral sounds used in this study included a total of 60 music

Table 3. Results of pairwise comparisons between mean weights in ROIs shown in Fig. 5C

Subject Group Pairwise Comparison ROI t Value Cohen’s d P value

Nonmusicians 1 Anterior nonprimary
15.91 5.03 6.75E-08

Primary

2 Anterior nonprimary
8.99 2.84 8.61E-06

Lateral nonprimary

3 Posterior nonprimary
7.25 2.29 4.81E-05

Primary

4 Posterior nonprimary
3.84 1.21 0.0040

Lateral nonprimary

Musicians 1 Anterior nonprimary
11.40 3.61 1.19E-06

Primary

2 Anterior nonprimary
7.66 2.42 3.14E-05

Lateral nonprimary

3 Posterior nonprimary
4.49 1.42 0.0015

Primary

4 Posterior nonprimary
2.72 0.86 0.0237

Lateral nonprimary

Component weights were first averaged over hemispheres, and significance between ROI pairs was evaluated using paired t tests (n = 10). Note
that because of our prior hypotheses and the significance of the omnibus F test, we did not correct for multiple comparisons. ROI, region of interest.
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stimuli, spanning a variety of instruments, genres, and cul-
tures. Using this diverse set of music stimuli, we can begin to
address the questions of 1) whether music selectivity is spe-
cific to the music of one’s own culture, and 2) whether music
selectivity is driven solely by features related to pitch, like
the presence of a melody. Here, we analyze the music com-
ponent inferred from all 20 participants since similar music
components were inferred separately from musicians and
nonmusicians (see Appendix and Fig. A7 for details of the
components inferred from all 20 participants).

To expand beyond the original stimulus set from Ref. 7,
which contained music exclusively from traditionally
Western genres and artists, we selected additional music clips
from several non-Western musical cultures that varied in to-
nality and rhythmic complexity (e.g., Indian raga, Balinese

gamelan, Chinese opera, Mongolian throat singing, Jewish
klezmer, Ugandan lamellophonemusic; Fig. 6A). We expected
that our American participants would have less exposure to
these musical genres, allowing us to see whether the music
component makes a distinction between familiar and less fa-
miliar music. The non-Western music stimuli were rated by
American Mechanical Turk participants as being similarly
musical (mean rating on 1–100 scale for Western music =
86.28, SD = 7.06; non-Western music mean = 79.63, SD = 9.01;
P = 0.37, 10,000 permutations) but less familiar (mean rating
on 1–100 scale for Western music = 66.50, SD = 8.23; non-
Western music mean = 45.50, SD = 15.83; P < 1.0e-5, 10,000
permutations) than typical Westernmusic. Despite this differ-
ence in familiarity, the magnitude of non-Western music
stimuli within themusic component was only slightly smaller
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Figure 6. A: close-up of the response profile (192 sounds) for the music component inferred from all participants (n = 20), with example stimuli labeled. Note
that there are a few “nonmusic” stimuli (categorized as such by Amazon Mechanical Turk raters) with high component rankings, but that these are all arguably
musical in nature (e.g., wind chimes, ringtone). Conversely, “music” stimuli with low component rankings (e.g., “drumroll” and “cymbal crash”) do not contain sa-
lient melody or rhythm, despite being classified as “music” by human listeners. B: distributions of Western music stimuli (n = 30), non-Western music stimuli (n =
14), and nonmusic stimuli (n = 132) within the music component response profile inferred from all 20 participants, with the mean for each stimulus group indi-
cated by the horizontal black line. The separability between categories of stimuli (as measured using Cohen’s d) is shown above the plot. Note that drum stim-
uli were left out of this analysis. C: distributions of melodic music stimuli (n = 44), drum rhythm stimuli (n = 16), and nonmusic stimuli (n = 132) within the music
component response profile inferred from all 20 participants, with the mean for each stimulus group indicated by the horizontal black line. The separability
between categories of stimuli (as measured using Cohen’s d) is shown above the plot, and significance was evaluated using a nonparametric test permuting
stimulus labels 10,000 times. ����Significant at P< 0.0001, two-tailed. Sounds are colored according to their semantic category.
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than the magnitude of Western music stimuli (Cohen’s d =
0.64), a difference that was only marginally significant (Fig.
6B; P = 0.052, nonparametric test permuting music stimulus
labels 10,000 times). Moreover, the magnitudes of both
Western and non-Western music stimuli were both much
higher than nonmusic stimuli (Western music stimuli vs. non-
music stimuli: Cohen’s d = 3.79, P < 0.0001, 10,000 permuta-
tions; non-Western music vs. nonmusic: Cohen’s d = 2.85; P <
0.0001, 10,000 permutations). Taken together, these results
suggest that music-selective responses in auditory cortex occur
even for relatively unfamiliarmusical systems and genres.

Which stimulus features drive music selectivity? One of
the most obvious distinctions is between melody and
rhythm. Although music typically involves both melody and
rhythm, when assembling our music stimuli we made an
attempt to pick clips that varied in the prominence and com-
plexity of their melodic and rhythmic content. In particular,
we included 13 stimuli consisting of drumming from a vari-
ety of genres and cultures, because drum music mostly iso-
lates the rhythmic features of music while minimizing
(though not eliminating) melodic features. Whether music-
selective auditory cortex would respond highly to these
drum stimuli was largely unknown, partially because the
Norman-Haignere et al. (7) study only included two drum
stimuli, one of which was just a stationary snare drum roll
that produced a low response in themusic component, likely
because it lacks both musical rhythm and pitch structure.
The drum stimuli in our study ranked below the other instru-
mental and vocal music category responses (Cohen’s d = 1.42,
P < 8.76e-07), but higher than the other nonmusic stimulus
categories (Cohen’s d = 1.75, P< 9.60e-11; Fig. 6C). This finding
suggests that themusic component is not simply tuned tome-
lodic information but is also sensitive to rhythm.

DISCUSSION
Our results show that cortical music selectivity is present in

nonmusicians and hence does not require explicit musical
training to develop. Indeed, the same six response compo-
nents that characterized human auditory cortical responses
to natural sounds in our previous study were replicated twice
here, once in nonmusicians, and once in musicians. Our goal
in this study was not to make statistical comparisons between
nonmusicians and musicians (which would have required a
prohibitive amount of data, see Direct Group Comparisons of
Music Selectivity in the Appendix) but rather to assess
whether the key properties of music selectivity were present
in each group. Thus, although we cannot rule out the possibil-
ity that there are some differences between music-selective
neural responses in musicians and nonmusicians, we have
shown that in both groups, voxel decomposition produced a
single music-selective component, which was selective for
both instrumental and vocal music, and which was concen-
trated bilaterally in anterior and posterior superior temporal
gyrus (STG). We also observed that the music-selective com-
ponent responds strongly to both drums and less familiar
non-Western music. Together, these results suggest that pas-
sive exposure to music is sufficient for the development of
music selectivity in nonprimary auditory cortex, and that
music-selective responses extend to rhythms with little mel-
ody, and to relatively unfamiliarmusical genres.

Origins of Music Selectivity

Our finding of music-selective responses in nonmusicians
is inconsistent with the hypothesis that explicit training is
necessary for the emergence of music selectivity in auditory
cortex and suggests rather that music selectivity is either
present from birth or results from passive exposure tomusic.
If present from birth, music selectivity could in principle
represent an evolutionary adaptation for music, definitive
evidence for which has long been elusive (80). But it is also
plausible that music-specific representations emerge over
development due to the behavioral importance of music in
everyday life. For example, optimizing a neural network
model to solve ecological speech and music tasks yields sep-
arate processing streams for the two tasks (81), suggesting
that musical tasks sometimes require music-specific fea-
tures. Another possibility is that music-specific features
might emerge in humans or machines without tasks per se,
due to the fact that music is acoustically distinct from other
natural sounds. One way of testing this hypothesis might be
to use generic unsupervised learning, for instance for pro-
ducing efficient representations of sound (82–84), which
might produce a set of features that are activated primarily
bymusical sounds.

Nearly all of our participants reported listening to music
on a daily basis, and in other contexts, this everyday musical
experience has clear effects (10–15), providing an example of
how unsupervised learning frommusic might alter represen-
tations in the brain. Additionally, behavioral studies of non-
industrialized societies who lack much contact with Western
culture show pronounced differences from Westerners in
many aspects of music perception (85–88) and might plausi-
bly also exhibit differences in the degree or nature of cortical
music selectivity. Thus, our data do not show that music se-
lectivity in the brain is independent of experience but rather
that typical exposure to music in Western culture is suffi-
cient for cortical music selectivity to emerge. It remains pos-
sible that the brains of people who grow up with less
extensive musical exposure than our participants would not
display such pronouncedmusic selectivity.

What Does Cortical Music Selectivity Represent?

The music-selective component responds strongly to a
wide range of music and weakly to virtually all other sounds,
demonstrating that it is driven by a set of features that are
relatively specific to music. One possibility is that there are
simple acoustic features that differentiate music from other
types of stimuli. Speech and music are known to differ in
their temporal modulation spectra, peaking at 5 Hz and 2
Hz, respectively (89), and some theories suggest that these
acoustic differences lead to neural specialization for speech
vs. music in different cortical regions (90). However, stand-
ard auditory models based on spectrotemporal modulation
do not capture the perception of speech and music (91) or
neural responses selective for speech and music (55, 74, 81,
92). In particular, the music-selective component responds
substantially less to sounds that have been synthesized to
have the same spectrotemporal modulation statistics as nat-
ural music, suggesting that the music component does not
simply represent the audio or modulation frequencies that
are prevalent inmusic (55).
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Our finding that the music-selective component shows
high responses to less familiar musical genres places some
constraints on what these properties might be, as does the
short duration of the stimuli used to characterize music se-
lectivity. For instance, the music-specific features that drive
the response are unlikely to be specific toWesternmusic and
must unfold over relatively short timescales. Features that
are common to nearly all music, but not other types of
sounds, include stable and sustained pitch organized into
discrete note-like elements, and temporal patterning with
regular time intervals. Because the music component ana-
tomically overlaps with more general responses to pitch (7),
it is natural to wonder if it represents higher-order aspects of
pitch, such as the previously mentioned stability, or discrete
jumps from one note to another. However, the high response
to drum rhythms in the music component that we observed
here indicates that the component is not only sensitive to
pitch structure. Instead, this result suggests that melody and
rhythmmight be jointly analyzed, rather than dissociated, at
least at the level of auditory cortex. One possibility is that
the underlying neural circuits extract temporally local repre-
sentations of melody and rhythm motifs that are assembled
elsewhere into the representations of contour, key, meter,
groove etc. that are the basis of music cognition (3, 93–96).

Limitations

Our paradigm used relatively brief stimuli since music-
selective regions are present just outside of primary auditory
cortex, where integration periods appear to be short (74, 97).
And we intentionally used a simple task (intensity discrimi-
nation) to encourage subjects to attend to all stimuli. But
because the responses of auditory cortical neurons have
been known to change based on task demands (e.g., 98), it is
possible that more complex stimuli or tasks would reveal
additional aspects ofmusic-selective responses, whichmight
not be present to a similar degree in nonmusicians. One rel-
evant point of comparison is the finding that amusic par-
ticipants with striking pitch perception deficits show
pitch-selective auditory cortical responses that are indistin-
guishable from those of control participants with univariate
analyses (99). Recent evidence suggests it is nonetheless pos-
sible to discriminate amusic participants from controls and
to predict participants’ behavioral performance, using fMRI
data collected in the context of a pitch task (100). Utilizing a
music-related task might produce larger differences between
musicians and nonmusicians, as might longer music stimuli
(compared with the 2-s clips used in this experiment), which
could be argued to contain richer melodic, harmonic, and/or
rhythmic information.

Finally, our study is limited by the resolution of fMRI.
Voxel decomposition is intended to help overcome the spa-
tial limitations of fMRI, and indeed appears to reveal
responses that are not evident in raw voxel responses but
can be seen with finer-grained measurement substrates such
as electrocorticography (6). But the spatial and temporal re-
solution of the BOLD signal inevitably constrain what is de-
tectable and place limits on the precision with which we can
observe the activity of music-selective neural populations.
Music-selective brain responses might well exhibit addi-
tional characteristics that would only be evident in fine-

grained spatial and temporal response patterns that cannot
be resolved with fMRI. Thus, we cannot rule out the possibil-
ity that there are additional aspects of music-selective neural
responses that might be detectable with other neuroimaging
methods (e.g., M/EEG, ECoG) and which are absent or
altered in nonmusicians.

Future Directions

One of the most interesting open questions raised by
our findings is whether cortical music selectivity reflects
implicit knowledge gained through typical exposure to
music, or whether it is present from birth. These hypothe-
ses could be addressed by testing people with very differ-
ent musical experiences from non-Western cultures or
other populations whose lifetime perceptual experience
with music is limited in some way (e.g., people with musi-
cal anhedonia, children of deaf adults). It would also be
informative to test whether music selectivity is present in
infants or young children. Finally, much remains to be
learned about the nature of cortical music selectivity,
such as what acoustic or musical features might be driv-
ing it. The voxel decomposition approach provides one
way of answering these questions and exploring the quin-
tessentially human ability for music.

APPENDIX

Psychoacoustic Data Acquisition and Analysis

To validate participants’ self-reported musicianship, we
measured participants’ abilities on a variety of psychoacous-
tical tasks for which prior evidence suggested thatmusicians
would outperform nonmusicians. For all psychoacoustic
tasks, stimuli were presented using Psychtoolbox for Matlab
(101). Sounds were presented to participants at 70dB SPL
over circumaural Sennheiser HD280 headphones in a
soundproof booth (Industrial Acoustics; SPL level was com-
puted without any weighting across time or frequency).
After each trial, participants were given feedback about
whether or not they had answered correctly. Group differen-
ces for each task were measured using nonparametric
Wilcoxon rank sum tests.

Pure tone frequency discrimination.

Because musicians have superior frequency discrimination
abilities when compared with nonmusicians (102–104), we
first measured participants’ pure tone frequency discrimina-
tion thresholds using an adaptive two-alternative forced
choice (2AFC) task. In each trial, participants heard two
pairs of tones. One of the tone pairs consisted of two identi-
cal 1-kHz tones, whereas the other tone pair contained a
1-kHz tone and a second tone of a different frequency.
Participants determined which tone interval contained the
frequency change. The magnitude of the frequency differ-
ence was varied adaptively using a 1-up 3-down procedure
(105), which targets participants’ 79.4% threshold. The fre-
quency difference was changed initially by a factor of two,
which was reduced to a factor ofH2 after the fourth reversal.
Once 10 reversals had been measured, participants’ thresh-
olds were estimated as the average of these 10 values.

MUSIC SELECTIVITY WITHOUT MUSICAL TRAINING

J Neurophysiol � doi:10.1152/jn.00588.2020 � www.jn.org 2251
Downloaded from journals.physiology.org/journal/jn at Massachusetts Inst of Tech Lib (018.009.061.111) on June 9, 2021.

http://www.jn.org


Multiple threshold estimations were obtained per partici-
pant (three threshold estimations for the first seven partici-
pants, and five for the remaining 13 participants), and then
averaged.

Synchronized tapping to an isochronous beat.

Sensorimotor abilities are crucial to musicianship, and fin-
ger tapping tasks show some of the most reliable effects of
musicianship (106–108). Participants were asked to tap
along with an isochronous click track. They heard ten 30-s
click blocks, separated by 5 s of silence. The blocks varied
widely in tempo, with interstimulus intervals ranging
from 200 ms to 1 s (tempos of 60 to 300 bpm). Each tempo
was presented twice, and the order of tempi was permuted
across participants. We recorded the timing of partici-
pants’ responses using a tapping sensor used in previous
studies (85, 109). We then calculated the difference
between participants’ response onsets and the actual stim-
ulus onsets. The standard deviation of these asynchronies
between corresponding stimulus and response onsets was
used as a measure of sensorimotor synchronization ability
(109).

Melody discrimination.

Musicians have also been reported to outperform non-
musicians on measures of melodic contour and interval
discrimination (44, 110, 111). In each trial, participants
heard two five-note melodies and were asked to judge
whether the two melodies were the same or different.
Melodies were composed of notes that were randomly
drawn from a log uniform distribution of semitone steps
from 150 Hz to 270 Hz. The second melody was trans-
posed up by half an octave and was either identical to
the first melody or contained a single note had that had
been altered either up or down by 1 or 2 semitones. Half
of the trials contained a second melody that was the
same as the first melody, whereas 25% contained a pitch
change that preserved the melodic contour and the
remaining 25% contained a pitch change that violated the
melodic contour. There were 20 trials per condition (same/dif-
ferent melody � same/different contour � 1/2 semitone
change), for a total of 160 trials. This task was modified from
McPherson andMcDermott (111).

“Sour note” detection.

To measure participants’ knowledge of Western music, we
also measured participants’ ability to determine whether a
melody conforms to the rules of Western music theory. The
melodies used in this experiment were randomly generated
from a probabilistic generative model of Western tonal mel-
odies that creates a melody on a note-by-note basis accord-
ing to the principles that 1) melodies tend to be limited to a
narrow pitch range, 2) note-to-note intervals tend to be
small, and 3) the notes within the melody conform to a sin-
gle key (112). In each trial of this task, participants heard a
16-note melody and were asked to determine whether the
melody contained an out-of-key (“sour”) note. In half of the
trials, one of the notes in the melody was modified so that it
was rendered out of key. The modified notes were always

scale degrees 1, 3, or 5 and they were increased by either 1 or
2 semitones accordingly so that they were out of key (i.e.,
scale degrees 1 and 5 were modified by 1 semitone, and scale
degree 3 was modified by 2 semitones). Participants judged
whether the melody contained a sour note (explained as a
“mistake in the melody”). There were 20 trials per condition
(modified or not � 3 scale degrees), for a total of 120 trials.
This task was modified from McPherson and McDermott
(111).

Psychoacoustic Results

As predicted, musicians outperformed nonmusicians on all
behavioral psychoacoustic tasks, replicating prior findings
(Fig. A1). Consistent with previous reports (102–104), musi-
cians performed slightly better on the frequency discrimina-
tion task (median discrimination threshold = 0.51%, SD =
0.12%) than nonmusicians (median discrimination thresh-
old = 0.57%, SD = 0.23%); this difference was marginally

*

Mus. Non-Mus.

0

0.4

0.8

1.2

1.6

Th
re

sh
ol

d 
(%

)

Mus. Non-Mus.
0

50

100

St
an

da
rd

 D
ev

. (
m

s)

Mus. Non-Mus.
0.2

0.4

0.6

0.8

1

R
O

C
 A

re
a

Mus. Non-Mus.
0.2

0.4

0.6

0.8

1

1.2

R
O

C
 A

re
a

A Frequency Discrimination B Sensorimotor Synchronization

C Melody Discrimination D  “Sour Note” Detection

** **

Figure A1. Musicians (n = 10) outperform nonmusicians (n = 10) on psycho-
acoustic tasks. A: participants’ pure tone frequency discrimination thresh-
olds were measured using a 1-up 3-down adaptive two-alternative forced
choice (2AFC) task, in which participants indicated which of two pairs of
tones were different in frequency. Note that lower thresholds correspond
to better performance. B: sensorimotor synchronization abilities were
measured by instructing participants to tap along with an isochronous
beat at various tempos and comparing the standard deviation of the differ-
ence between participants’ response onsets and the actual stimulus
onsets. C: melody discrimination was measured using a 2AFC task, in
which participants heard two five-note melodies (with the second one
transposed up by a tritone) and were asked to judge whether the two mel-
odies were the same or different. D: we measured participants’ ability to
determine whether a melody conforms to the rules of Western music
theory by creating 16-note melodies using a probabilistic generative
model of Western tonal melodies (112) and instructing participants to
determine whether or not the melody contained an out-of-key (“sour”)
note. Colored dots represent individual participants, and the median for
each participant group is indicated by the horizontal black line. Mus., musi-
cians; Non-Mus., nonmusicians. �Significant at P < 0.01 one-tailed,
��Significant at P< 0.001 one-tailed.
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significant (Z = �1.32, P = 0.09, effect size r = �0.30, one-
tailed Wilcoxon rank sum test, Fig. A1A). Musicians were
also better able to synchronize their finger tapping with an
isochronous beat, showing significantly less variability in
their response (SD = 22.4 ms) than nonmusicians (SD = 37.7
ms, Z = �2.68, P < 0.01, effect size r = �0.60, one-tailed
Wilcoxon rank sum test, Fig. A1B). When presentedwithmu-
sical melodies, musicians were better able to discriminate
between two similar melodies (musician median ROC area =
0.82, SD = 0.08, nonmusician mean ROC area = 0.66, SD =
0.09, Z = 3.21, P < 0.001, effect size r = 0.72, one-tailed
Wilcoxon rank sum test, Fig. A1C) and to detect scale viola-
tions within melodies (musician median ROC area = 0.89,
SD = 0.06, nonmusicians median ROC area = 0.70, SD =
0.10, Z = 3.44, P < 0.001, effect size r = 0.77, one-tailed
Wilcoxon rank sum test, Fig. A1D). These behavioral effects
validate our participants’ self-reported status as trained
musicians or nonmusicians.

Details of Voxel Selection

To be included as input to the decomposition algorithm, a
voxel must display a significant (P < 0.001, uncorrected)
response to sound (pooling over all sounds compared with
silence) and produce a reliable response pattern to the stim-
uli across scanning sessions (see equations in MATERIALS AND

METHODS section). For the main analyses, voxels were
selected from within a large anatomical constraint region.
Voxels selected in individual participants according to these
criteria can be seen in Fig. A2. To see whether the anatomi-
cal constraint was missing a substantial number of reliably
sound-responsive voxels, we also selected voxels without
the anatomical constraint (Fig. A3), and the resulting com-
ponents were very similar (Fig. A4).

Details of Voxel Decomposition

Like ICA, the voxel decompositionmethod (7) searches among
the many possible solutions to the factorization problem
for components that have a maximally non-Gaussian dis-
tribution of weights across voxels. The voxel weights of
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Non-Musicians
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Figure A2. Subject overlap maps showing which voxels were selected
in individual subjects to serve as input to the voxel decomposition
algorithm. The white area shows the anatomical constraint regions
from which voxels were selected. A: overlap map for all 20 subjects.
B: overlap maps for nonmusicians (n = 10) and musicians (n = 10) sepa-
rately, illustrating that the anatomical location of the selected voxels
was largely similar across groups.
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Figure A3. Subject overlap maps showing which voxels pass the selection
criteria as described in Fig. A2, but without any anatomical mask applied
before selecting voxels.
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the inferred components were indeed more skewed and
kurtotic than would be expected from a Gaussian distri-
bution (Fig. A5).

As explained in the MATERIALS AND METHODS, the only free
parameter in the voxel decomposition analysis is the num-
ber of components recovered. To determine the optimal
number of components, we measured the fraction of the
reliable response variance explained by a given number of
components and chose the number after which the
explained variance plateaued (Fig. A6).

Replication of Norman-Haignere et al. Using Data from
All 20 Participants

In addition to conducting the voxel decomposition analysis
separately for musicians and nonmusicians, we were able rep-
licate the full results from Ref. 7 using data from all 20 partici-
pants from both groups. Here, we describe that analysis in
more detail and explainmore about the four components that
are selective for acoustic stimulus features.

In our previous study (7), as in the analyses described for
the current study, prior to applying the voxel decomposition
algorithm, each participant’s responses were demeaned

across voxels (see MATERIALS AND METHODS), such that each
participant had the same mean response (across voxels) for
a given sound. This normalization was included to prevent
the voxel decomposition algorithm from discovering addi-
tional components that were driven by a single participant
(e.g., due to nonreplicable sources of noise, such as motion
during a scan). However, this analysis step would also
remove any group difference in the average response to cer-
tain sounds (e.g., music stimuli). To prevent this effect from
removing differences between musicians and nonmusicians
that might be of interest, we ran the voxel decomposition
algorithm without demeaning by individual participants.
When we varied the number of components as we normally
do to determine the number of components to use for ICA,
we found that the best results were obtained with eight com-
ponents, which included the expected set of six plus two
“extra” components that emerged as a result of the omitted
normalization step. If we include the normalization step, we
found the expected set of six components.

Of the eight components derived from the nondemeaned
data, six of them were each very similar to one of the six com-
ponents from Ref. 7 and accounted for 87.54% of voxel
response variance. Because the components inferred using

A   Response Profiles: Whole-Brain vs. With Anatomical Mask 

B   Anatomical Distribution of Whole-Brain Component Weights
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Figure A4. Similarity between components with anatomical mask vs. whole-brain. A: scatter plots showing the components inferred from all 20 partici-
pants, using the voxel decomposition algorithm both with and without the anatomical mask shown in Fig. A2. Individual sounds are colored according to
their semantic category. B: spatial distribution of whole brain component voxel weights, computed using a random effects analysis of participants’ indi-
vidual component weights. Weights are compared against 0; P values are logarithmically transformed (�log10[P]). The white outline indicates the voxels
that were both sound-responsive (sound vs. silence, P < 0.001 uncorrected) and split-half reliable (r> 0.3) at the group level. The color scale represents
voxels that are significant at FDR q = 0.05, with this threshold being computed for each component separately. Voxels that do not survive FDR correction
are not colored, and these values appear as white on the color bar. The right hemisphere (bottom row) is flipped to make it easier to visually compare
weight distributions across hemispheres. FDR, false discovery rate.
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Figure A5. A: histograms showing the weight distributions for each component inferred from nonmusicians (n = 10), along with their Gaussian fits (red).
B: skewness and log-kurtosis (a measure of sparsity) for each component inferred from nonmusicians (n = 10), illustrating that the inferred components
are skewed and sparse compared with a Gaussian (red dotted lines). Box-and-whisker plots show central 50% (boxes) and central 95% (whiskers) of the
distribution for each statistic (via bootstrapping across subjects). For both the weight distribution histograms and analyses of non-Gaussianity, we used
independent data to infer components (runs 1–24) and to measure the statistical properties of the component weights (runs 25–48). C and D: same as A
and B, but for the components inferred from musicians (n = 10). E and F: same as A and B, but for the components inferred from all 20 participants.
Comp, component.
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ICA have no order, we first used the Hungarian algorithm (65)
to optimally reorder the components, maximizing their corre-
lation with the components from our previous study. As
expected, the reordered components were highly correlated,
with r values ranging from 0.76 to 0.98 (Fig. A7A; see Fig. A7B
for the response profiles of the components, and Fig. A7C for
the profiles averaged within sound categories). To confirm
that these strong correlations are not simply an artifact of the
Hungarian algorithmmatching procedure, we ran a permuta-
tion test in which we reordered the sounds within each com-
ponent 1,000 times, each time using the Hungarian algorithm
to match these permuted components with those from our
previous study. The resulting correlations between the origi-
nal components their corresponding permuted components
were very low (mean r values ranging from 0.086 to 0.098),
with the maximum correlation over all 1,000 permutations
not exceeding r = 0.3 for any component.

The additional two components were much less corre-
lated with any of the six original components, with the
strongest correlation being r = 0.28. As expected, the weights
of these additional two components were concentrated in a
small number of participants (one almost entirely loading
onto a single nonmusician participant, and the other onto a
small group composed of both musicians and nonmusi-
cians). For this reason, we omitted these two components
from further analyses and focused on the set of six compo-
nents that closely match those discussed previously (Fig. A7,
B–H). The non-Gaussianity of these six components can be
seen in Fig. A5A (skewness ranging from 1.06 to 2.96, log-
kurtosis ranging from 1.70 to 2.79).

As in Ref. 7, four of the components were selective for dif-
ferent acoustic properties of sound (Fig. A7, D and E, Fig.
A8), whereas two components were selective for speech
(component 5) and music respectively (component 6; Fig. A7,
B and C, Fig. A8). The components replicated all of the func-
tional and anatomical properties from our prior study,
which we briefly describe here.

Components 1 and 2 exhibited high correlations between
their response profiles andmeasures of stimulus energy in ei-
ther low- (component 1) or high-frequency bands (component
2; Fig. A7D). The group anatomical weights for components 1
and 2 concentrated in the low- and high-frequency regions of
primary auditory cortex (Fig. A7, F and H) (67, 70, 113, 114).
We did not measure tonotopy in the individual participants
from this study, but our previous study did so and found a
close correspondence between individual participant tono-
topic maps and the weights for these two components.
Components also showed tuning to spectrotemporal modu-
lations (Fig. A7E), with a tradeoff between selectivity for
fine spectral and slow temporal modulation (components 1
and 4) versus coarse spectral and fast temporal modulation
(components 2 and 3) (115, 116). Component 4, which exhib-
ited selectivity for fine spectral modulation, was concen-
trated anterior to Heschl’s gyrus (component 4, Fig. A7, F
andH), similar to prior work that has identified tone-selec-
tive regions in anterolateral auditory cortex in humans
(117–119). Conversely, selectivity for coarse spectral modu-
lation and fast temporal modulation was concentrated in
posterior regions of auditory cortex (component 3, Fig. A7,
F and H) (71), consistent with previous studies reporting
selectivity for sound onsets in caudal areas of human audi-
tory cortex (120).

The two remaining components responded selectively to
speech and music, respectively (component 5 and 6, Fig. A7C)
and were not well accounted for using acoustic properties
alone (Fig. A8). The weights for the speech-selective compo-
nent (component 5) were concentrated in the middle portion
of the superior temporal gyrus (midSTG, Fig. A7, F and H), as
expected (73–75). In contrast, the weights for the music-selec-
tive component (component 6) were most prominent anterior
to PAC in the planum polare, with a secondary cluster poste-
rior to PAC in the planum temporale (Fig. A7, F and H) (3, 7,
41, 48, 52, 76, 77).

These results closely replicate the functional organiza-
tion of human auditory cortex reported by Norman-
Haignere et al. (7), including the existence and anatomical
location of inferredmusic-selective neural populations.

Component Voxel Weights within 15 Anatomical ROIs

In addition to visualizing component voxel weights as corti-
cal maps depicting the results of a group random effects
analysis (e.g., Fig. 3), we measured individual participants’
mean voxel weights within a set of 15 standardized anatomi-
cal parcels from (84), chosen to fully encompass the superior
temporal plane and superior temporal gyrus (STG; Fig. A9).
Combinations of subsets of these parcels were used in the
analysis described in Fig. 5.

Direct Group Comparisons of Music Selectivity

Music component selectivity.

One natural extension of the analyses presented in this pa-
per is to directly compare music selectivity in our group of
nonmusicians to that observed in our group of musicians.
To compare the selectivity of the music components
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Figure A6. The proportion of voxel response variance explained by differ-
ent numbers of components, for both nonmusicians (n = 10, left) and musi-
cians (n = 10, right). The figure plots the median variance explained across
voxels (noise corrected by split-half reliability using the Spearman correc-
tion for attenuation; 121), calculated separately for each subject and then
averaged across the 10 subjects in each group. Error bars plot one stand-
ard error of the mean across subjects. For both groups, six components
were sufficient to explain over 88% of the noise-corrected variance.
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inferred from each group, we computed Cohen’s d between
the distribution of component responses to music stimuli
(“Western instrumental,” “Non-Western instrumental,”
“Western vocal,” “Non-Western vocal,” and “drums”) and
the distribution of component responses to nonmusic stim-
uli (all other sound categories).

The significance of the observed group difference was eval-
uated using a nonparametric test in which we permuted par-
ticipant groupings (i.e., randomly assigning 10 participants to

group A, and the remaining 10 to group B) and inferred a set of
components for each permuted group. We then calculated
Cohen’s d for each group’s music component and computed
the absolute value of the difference between these two values.
We did this 1,000 times to build up a null distribution of
Cohen’s d differences and then compared this with the
observed difference in Cohen’s d for nonmusicians vs. musi-
cians and found the observed difference to be nonsignificant
(P = 0.21, one-tailed).

Figure A7. Independent components inferred from voxel decomposition of auditory cortex of all 20 participants (as compared with the components in
Figs. 2–5, which were inferred from musicians and nonmusicians separately). Additional plots are included here to show the extent of the replication of
the results of Ref. 7. A: scatterplots showing the correspondence between the components from our previous study (n = 10; y-axis) and those from the
current study (n = 20; x-axis). Only the 165 sounds that were common between the two studies are plotted. Sounds are colored according to their seman-
tic category, as determined by raters on Amazon Mechanical Turk. B: response profiles of components inferred from all participants (n = 20), showing
the full distribution of all 192 sounds. Sounds are colored according to their category. Note that “Western Vocal Music” stimuli were sung in English. C:
the same response profiles as above, but showing the average response to each sound category. Error bars plot one standard error of the mean across
sounds from a category, computed using bootstrapping (10,000 samples). D: correlation of component response profiles with stimulus energy in differ-
ent frequency bands. E: correlation of component response profiles with spectrotemporal modulation energy in the cochleograms for each sound. F:
spatial distribution of component voxel weights, computed using a random effects analysis of participants’ individual component weights. Weights are
compared against 0; P values are logarithmically transformed (�log10[P]). The white outline indicates the 2,249 voxels that were both sound-responsive
(sound vs. silence, P < 0.001 uncorrected) and split-half reliable (r > 0.3) at the group level. The color scale represents voxels that are significant at FDR
q = 0.05, with this threshold being computed for each component separately. Voxels that do not survive FDR correction are not colored, and these val-
ues appear as white on the color bar. The right hemisphere (bottom row) is flipped to make it easier to visually compare weight distributions across hemi-
spheres. G: subject overlap maps showing which voxels were selected in individual subjects to serve as input to the voxel decomposition algorithm
(same as Fig. A2A). To be selected, a voxel must display a significant (P < 0.001, uncorrected) response to sound (pooling over all sounds compared to
silence) and produce a reliable response pattern to the stimuli across scanning sessions (see equations in MATERIALS AND METHODS section). The white
area shows the anatomical constraint regions from which voxels were selected. H: mean component voxel weights within standardized anatomical par-
cels from Ref. 84, chosen to fully encompass the superior temporal plane and superior temporal gyrus (STG). Error bars plot one standard error of the
mean across participants. LH, left hemisphere; RH, right hemisphere; ROI, region of interest.
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Norman-Haignere et al. (2015)
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Figure A8. Total amount of component response
variation explained by 1) all acoustic measures (fre-
quency content and spectrotemporal modulation
energy), 2) all category labels (as assigned by
Amazon Mechanical Turk workers), and 3) the com-
bination of acoustic measures and category labels.
A: results for components from our previous study
(n = 10; 7). For components 1–4, category labels
expla-ined little additional variance beyond that
explained by acoustic features. For components 5
(speech-selective) and 6 (music-selective), category
labels explained most of the response variance,
and acoustic features accounted for little additional
variance. B: same as A but for the components
inferred from all 20 participants in the current study.
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It was not possible to conduct a power analysis using the
data from Ref. 7 to determine how large of a difference we
are powered to detect with our sample size, because the
component analysis is sometimes unstable when the num-
ber of unique participants drops below 10, which made it
impossible to bootstrap and infer a large number of sets of
components. For that reason, we cannot rule out the possi-
bility that a small difference does exist, but that this test is
underpowered.

Music component weight magnitude and power analysis.

We thought it would be interesting to directly compare the
magnitude of the weights of the music-selective component
between expert musicians and nonmusicians. So that

individual participants’ component weight magnitudes
could be compared in a meaningful way, we planned to run
the voxel decomposition analysis on the data from all 20
participants (as reported in the APPENDIX section titled
Replication of Norman-Haignere et al. Using Data from All
20 Participants) and directly compare the weights of musi-
cians vs. nonmusicians for the resulting music component.
Although there are many ways to summarize a participant’s
component magnitude, we used the median weight over
their voxels with the top 10% of component weights (using
independent data to select the voxels vs. quantify selectiv-
ity), though results were robust to the fraction of voxels
selected (i.e., measuring participants’ median weight over
the top 5%, 7.5%, 10%, 15%, and 20% of voxels led to similar
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results). This decision to select a subset of voxels was made
because music selectivity is typically sparse and limited to a
small fraction of voxels, and we thought it reasonable to
expect the largest group difference in the regions of auditory
cortex with the highest music component weights.

To get a sense for how large a group difference wewould be
able to reliably detect given our sample size, we conducted a
power analysis using the data from Ref. 7. We compared the
music component weights for the participants in that study (n
= 10) with a second population of 10 participants created by
sampling participants with replacement and then shifting
their component weights by various amounts (ranging from
0% to 100% in increments of 5%), representing variousmodels
for how the music component weights might change in musi-
cians. The difference between the groups’ median weights
was computed, and the significance of this group difference
was assessed by permuting participant groupings 1,000 times.
For each shift amount, we repeated this entire procedure
1,000 times, each time sampling a new set of 10 participants
for each group. The probability of detecting a significant
group difference for each shift amount was recorded, and the
results showed that we were able to detect a significant group
difference 80% of the time only when the two groups’median
weights differed by 47%.

This power analysis suggests that with our sample size,
we are only able to detect a relatively large difference in
music component weight magnitude between the groups.
With this in mind, we performed this analysis and found the
strength of the music component was slightly higher in
musicians compared with nonmusicians, but this difference
did not reach significance (P = 0.11, two-tailed nonparamet-
ric test permuting subject groupings 10,000 times). A
Bayesian independent-sample t test was inconclusive [t(18) =
1.68, P = 0.11, BF10 = 1.03; prior on the effect size following a
Cauchy distribution with r =

ffiffiffi
2

p
=2], which suggests that the

data are equally likely under the null hypothesis that groups
do not differ in their music component weightmagnitude vs.
the alternative hypothesis that they do. Together, these
results do not rule out differences between the strength of
music selectivity in individuals at the two extremes of musi-
cal training, but they suggest that any such differences are
not large.

As previously explained, we thought that restricting this
analysis to the most music-selective voxels (i.e., the voxels
with the highest music component weights) would be most
likely to detect any group difference in weight magnitude.
However, we also tried a simpler analysis in which we ran an
ROI � hemisphere repeated-measures ANOVA on partici-
pants’weights for the component inferred from all 20 partic-
ipants, and including “group” as a between-subjects factor.
When we do this, we still find a significant main effect of
ROI [F(3,54) = 37.89, P = 2.56e-13], but no significant main
effect of hemisphere [F(1,18) = 0.84, P = 0.37], as was found
in the corresponding analyses within each group that are
reported in themain text. However, we also found no signifi-
cant main effect of group [F(1,18) = 2.81, P = 0.11] or any sig-
nificant two-way or three-way interactions with group (all
Ps> 0.05). Moreover, a Bayesian version of this analysis pro-
vides no evidence either for or against an effect of group
(BFinc = 1.11). This result is consistent with the power analy-
sis, indicating that although we find no evidence of a

difference between musicians’ and nonmusicians’ music
component weights, we do not have enough statistical
power to rule out the possibility that a small difference does
exist.

Parametric Matrix Factorization Method

In addition to the nonparametric matrix factorizationmethod
reported throughout this paper, we repeated our analyses
using a probabilistic parametric algorithm also developed and
reported in Ref. 7, which did not constrain voxel weights to be
uncorrelated. This parametric model assumed a skewed and
sparse non-Gaussian prior (the Gamma distribution) on the
distribution of voxel weights, which constrained them to be
positive (unlike the nonparametric method). Because the
components discovered using the nonparametric method
showed different degrees of skewness and sparsity, the exact
shape of the Gamma distribution prior was allowed to vary
between components in this parametric analysis. Components
were discovered by searching for response profiles and shape
parameters that maximized the likelihood of the data, integrat-
ing across all possible voxel weights.

Due to the stochastic nature of themodel optimization pro-
cedure (see 7 for details), the optimization procedure was
repeated 25 times each for musicians and nonmusicians. For
each group, we chose the set of component response profiles
with the highest estimated log-likelihood (though all 25 itera-
tions produced very similar results) and used the Hungarian
algorithm to match themwith the components inferred using
the nonparametric method. The sets of components inferred
with these two different methods were very highly correlated,
with r values ranging from 0.83 to 0.998 for nonmusicians,
and from 0.90 to 0.99 for musicians. However, the compo-
nents did differ somewhat in the mean magnitude of the
response profiles (see Fig. A10), plausibly due to the positivity
constraint on the component voxel weights.
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