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Abstract

Deep neural networks have been embraced as models of sensory systems, in-
stantiating representational transformations that appear to resemble those in
the visual and auditory systems. To more thoroughly investigate their similarity
to biological systems, we synthesized model metamers – stimuli that produce
the same responses at some stage of a network’s representation. We gener-
ated model metamers for natural stimuli by performing gradient descent on
a noise signal, matching the responses of individual layers of image and au-
dio networks to a natural image or speech signal. The resulting signals reflect
the invariances instantiated in the network up to the matched layer. We then
measured whether model metamers were recognizable to human observers –
a necessary condition for the model representations to replicate those of hu-
mans. Although model metamers from early network layers were recognizable
to humans, those from deeper layers were not. Auditory model metamers be-
came more human-recognizable with architectural modifications that reduced
aliasing from pooling operations, but those from the deepest layers remained
unrecognizable. We also used the metamer test to compare model representa-
tions. Cross-model metamer recognition dropped off for deeper layers, roughly
at the same point that human recognition deteriorated, indicating divergence
across model representations. The results reveal discrepancies between model
and human representations, but also show how metamers can help guide model
refinement and elucidate model representations.

1 Introduction

Artificial neural networks now achieve human-level performance on tasks such as image and
speech recognition, raising the question of whether they should be taken seriously as models of
biological sensory systems [1, 2, 3, 4, 5]. Detailed comparisons of network performance character-
istics in some cases reveal human-like error patterns, suggesting computational similarities with
humans [6, 7, 8]. Other studies have found that brain responses can be better predicted by features
learned by deep neural networks than by those of traditional sensory models [2, 8]. On the other
hand, neural network models can typically be fooled by adversarial perturbations that have no
effect on humans [9, 10], are in some cases excessively dependent on particular image features,
such as texture [11], and do not fully mirror human sensitivity to image distortions [12, 13], sug-
gesting differences with human perceptual systems. However, these discrepancies have primarily
been demonstrated using stimuli specifically constructed to induce classification errors. Here, we
demonstrate that the divergence between artificial network and human representations occurs
generically rather than only in adversarial situations.
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We use “model metamers” to test the similarity between human and artificial neural network
representations. Metamers are stimuli that are physically distinct but that are perceived to be
the same by an observer. Stimuli that are metameric for humans have long been used to infer
the underlying structure of the human perceptual system. Metamers provided some of the
original evidence for trichromacy in human color vision, and have also been applied to texture
perception [14] and visual crowding [15, 16]. Related ideas can also be used to test models of
neural computation [17]. Here we leverage the idea that metamers for a valid model of human
perception should also be metamers for humans. Model metamers produce the same activations
in a model layer as some other stimulus (here a natural sound or image). Because the activations
at all subsequent layers must also be the same, the metamers are classified the same by the model.
Here, we approximate model metamers via iterative optimization, producing stimuli that produce
nearly the same activations as a natural stimulus, thus leading to the same network prediction. As a
test of whether the model accurately reflects human perception, we measure whether humans also
correctly classify the model metamers. Although this test is looser than the classical metamer test
(which requires metamers to be fully indistinguishable), it is conservative with respect to the goal
of testing a model of human recognition. We consider model metamers that are unrecognizable
to a human to be a model failure, cognizant that models that do not perfectly match human
representations in this way might nonetheless be useful in other respects.

Because the neural network models we consider are trained to classify exemplars of highly variable
object or speech classes, and thus to instantiate representations that are invariant to within-class
variation, it is expected that metamers from deeper layers will exhibit greater physical variability
than those from early layers. The question we sought to answer is whether the nature of the
invariances would be similar to those of humans, in which case the model metamers should
remain human-recognizable regardless of the stage from which they are generated. We generated
model metamers for three image-trained and five sound-trained models that perform well on state-
of-the-art tasks and then measured human recognition of the model metamers in psychophysical
experiments. We also applied the same method across networks, to ask whether the invariances
learned by one network resemble those learned by another. The results establish metamers as a
tool to test and understand deep neural networks, with potential uses for multi-task applications,
transfer learning, and network interpretability.

2 Related Work

2.1 Visualization of deep networks

Previous neural network visualizations have used gradient descent on the input signals to visualize
the representations in neural networks [18], in some cases matching the activations at a given layer
[19] as we do here. Natural image priors have been shown to make images reconstructed in this way
“look” more natural, and further regularization tools have been proposed with a similar purpose
[20, 21]. Although such regularization can generate visually appealing images, the importance of
using a natural image prior suggests differences between the network representations and those
of humans. Taking this observation as a starting point, we measured the human-recognizability
of images or sounds that were matched at different network stages without imposing a separate
prior, to quantify the potential divergence in representations and get clues as to its origins.

2.2 Comparing networks with other networks

Prior work on network similarity relates the learned representations via methods such as canonical
correlation analysis (CCA) [22, 23, 24]. Other such work has been inspired by the neuroscience
technique of representational similarity analysis [25, 26]. Here we also use metamers for model
comparison, on the grounds that metamers for one model should also be metamers for another
model (as measured here by producing the same class labels, although one could apply more
fine-grained methods) if the two models share invariances.

2.3 Metamers applied to averaged features

Metamers have been used to develop models of human perception by pooling features to directly
induce invariance across space or time. Work on visual crowding used images that have the
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Figure 1: Model metamers are constructed by optimizing a random input signal such that it
matches the measured activations of an original signal at a particular network stage. Model
metamers are then presented to humans (or other networks) to measure the similarity of internal
representations.

same spatially-averaged statistics in the periphery and are indistinguishable from the original
in particular viewing conditions [27, 16, 28, 29]. Other work has used time-averaged statistics
measured from auditory models, generating auditory textures that are mistaken for the original
natural sound [30, 31]. Our work here is a more general instantiation of the metamerism approach,
applicable to domains outside of peripheral vision and texture where invariances arise in the
service of recognition rather than as a direct consequence of pooling.

3 Methods

3.1 Metamer generation

Model metamers were generated using an iterative feature visualization technique [19] 1. We
initialized the metamer with noise and then performed gradient descent to minimize the squared
error between its network activations and those for a paired natural signal. All models and metamer
generation were implemented in TensorFlow [32]. Metamer synthesis used 15000 iterations of the
Adam optimizer [33] with a learning rate of 0.001, with the exception of the VGGish Embedding
(0.01) and DeepSpeech (0.0001) models.

In order to validate that we had appropriately matched the synthetic signal to the original, we
computed the Spearman correlation between the model metamer and corresponding original
signal. These correlations were typically close to 1 (Figure 2). Once candidate metamers were
generated, the following two conditions had to be true for a model metamer to be included in our
experiments: (1) The network predicted the same label for the synthetic metamer and the paired
natural image. This is the same classification test we apply to humans and other networks. (2) The
Spearman ρ between the metamer and natural image fell outside of a null distribution measured
between 1,000,000 randomly chosen image or audio pairs from the training set. We compare
to a null distribution rather than applying a strict threshold because the expected correlation
varies with the network and layer. Setting hard cutoffs could potentially call samples metameric
which are no more matched than chance, and we empirically found this procedure crucial for the
random network (Figure S3). Histograms of the null and metamer correlations for all networks
and selected layers are included in Tables S4-S5 and Figures S1-S8.

We found empirically that it was difficult to match some layers after a ReLU activation due to
the initialized signal producing many activations of zero (Fig 2(b)). To improve the optimization,
we modified the gradient through the metamer generation layer ReLU to be 1 for all values,
including for values below zero, when generating a metamer for activations immediately following
a ReLU. Figure 2(c) shows the matching fidelity (as measured by Spearman’s ρ) for 20 example
metamers generated with either the normal gradient or the modified gradient. The modified
gradient substantially improved the matching on some layers (layer_3 of DeepSpeech, and conv_4
of the Word Trained CNN). We used the modified gradient for all metamers generated after a ReLU.

1Example generation code and trained models: https://github.com/jenellefeather/model_metamers
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Figure 2: Validation of model metamer optimization (a) The model metamer is intended to
produce the same activations as the original stimulus in a particular network layer. We quantified
the fidelity of the matching as the Spearman correlation between the activations produced by
a model metamer and the corresponding original stimulus, with histograms across stimuli. For
a comparison null distribution, we also measured the correlation for randomly chosen pairs of
signals from the training set. As intended, metamers generated from an early layer (top row)
are well matched to the original in the early layer, with correlations close to 1 (blue distribution,
top left), far above the null distribution across stimuli (red). Because the networks used here are
deterministic and feedforward, the metamers should also produce the same activations at all
subsequent layers, and they do (correlations near 1 in late layers, blue distribution, top right).
Because of the many-to-one mapping instantiated by the network, metamers for a late layer
(bottom row) do not match the activations in the early layer better than chance (left), but match
the late layer as intended (right). (b) Comparison of activation matching with a standard ReLU
activation function gradient and with the modified ReLU gradient. Without the modification,
many non-zero values in the original activation get matched to zero. (c) Example layer-wise
matching fidelity for metamers generated with either the standard ReLU gradient (blue) and the
linear gradient ReLU (red) for two audio networks. In both networks there are layers that are
significantly better matched using the modified ReLU gradients.

For visual metamers, pixel values were bounded between 0-255 or 0-1 (matching the preprocessing
of the trained network), and were initialized with white noise with mean at the center value of the
range. No other regularization was employed. For audio metamers, we applied gradient clipping
to operations that resulted in problems with the optimization (specifically, logarithms and power
operations) which were present in the audio pre-processing (that transformed the waveform to a
frequency representation that provided the input to the networks). The audio metamer generation
was initialized with pink noise at an RMS value of 0.01.

3.2 Auditory models

Our experiments used a five-layer convolutional network trained on the output of a model of the
human ear. This cochlear model consisted of a filterbank of 171 filters spaced between 20Hz-80Hz
with bandwidths and spacing modeled on the human ear [34, 30]. The envelope of each resulting
audio subband was extracted via the Hilbert transform, downsampled to 200Hz, and passed
through a compressive non-linearity. This yielded a ‘cochleagram’ representation, similar to a
conventional spectrogram but with frequency resolution based on the human cochlea. We trained
an architecture similar to that in [8] (full architecture described in Table S2).

Many neural networks do not obey the sampling theorem (because downsampling occurs without
a preceding lowpass filter), and others have suggested that this could yield invariances that do
not align with human perception [35, 36, 37]. Motivated by these observations, we constructed
a modified architecture to reduce aliasing artifacts (Table S3). The modifications replaced max
pooling operations with weighted average pooling using a hanning kernel applied with stride equal
to that of the original max pooling. Any convolutional layer with a stride greater than one was
replaced with a convolutional layer with a stride of one, followed by a hanning pooling operation
with stride equal to the original convolutional stride.
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As a demonstration that model metamers could be used to investigate representations in other
audio models, we also generated example metamers from the VGGish network, which outputs em-
beddings used for training an environmental sound classifier and was released with the AudioSet
dataset [38]. We also generated metamers for the publicly available DeepSpeech architecture [39].

3.3 Auditory CNN training

The auditory models were trained a word recognition task similar to [8], using segments from the
Wall Street Journal [40] and Spoken Wikipedia Corpora [41]. Two-second speech segments were
used for training examples, with the word in the middle of the clip assigned as the class label for
training. There were 793 word classes sourced from 432 unique speakers, with 230357 unique clips
in the training set and 40651 segments in the validation set (full details of the dataset construction
are in Section S1.1). During training, the speech segments were randomly shifted in time and
superimposed on a subset of 718625 AudioSet examples, spanning 516 AudioSet categories [42].
Some CNN models were trained to predict the AudioSet labels. In order to match performance
between multiple models trained on the same task in Section 4.3 and eliminate confounds due to
task performance, we used an early stopping criteria on the validation set of 57% correct for the
word task and a mean area under the curve (AUC) of 0.83 for the AudioSet task.

3.4 Auditory metamer generation and experiments

We measured human recognition of model metamers using a task similar to that of [8]. A human
observer listened to a clip and chose one of 587 possible word labels. Sixteen participants com-
pleted the experiment, each completing five trials from each of the included conditions, randomly
ordered. Stimuli were generated from a set of 295 speech exemplars from the WSJ corpus (see
Table S1.2 for a summary of auditory model metamers, and Figures S1-S5 for full histograms of the
null and metamer Spearman ρ). Five sets of CNN metamers were generated for the experiment,
one for each of five models: 1) the architecture inspired by [8], trained on the word task, 2) the
random initialization of the reduced aliasing architecture, and 3) the reduced aliasing architecture
trained on the word task, 4) the reduced aliasing architecture trained on the AudioSet task, and
5) the reduced aliasing architecture trained simultaneously on the AudioSet and word tasks. For
each model, we included metamers constructed by matching the representations of the activation
following each convolutional layer, fully-connected layer, and the logits (with the exception of
the hanning pooling layer in the reduced aliasing networks that immediately followed strided
convolutions, to equate the number of features to that for the aliasing networks). We also included
metamers for the cochlear representation.

3.5 Image models, metamer generation, and experiments

ImageNet-trained models were obtained from publicly available pretrained checkpoints2. We
generated metamers from a subset of layers for each of VGG-19 [43], Inception-V3 [44], and ResNet-
101-V2 [45]. To compare performance between networks and humans in the visual domain, we
used a modified version of the image classification task described in [13]. For each of a set of layers
in the three pretrained ImageNet models, we generated metamers of 36 randomly selected natural
images across each of the 16 MS-COCO categories (see Supplement Table 4 for a summary of
matching the visual model metamers, and Supplement Figures 1-3 for full histograms of the null
and metamer histograms). Each of sixteen participants had to classify a subset of these metameric
stimuli and their corresponding natural image seeds, choosing the MS-COCO category; each
participant classified 10 examples per network-layer metamer condition.

4 Results

4.1 Image network model metamers

For all tested image networks,the metamers became unrecognizable to humans by the final stages
of the network (Figure 3a-b). The appearance of the metamers to humans varied depending on
the architecture. In Inception-V3 and ResNet-101-V2 (both of which include convolutions with

2https://github.com/tensorflow/models/tree/master/research/slim
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Figure 3: Deep network model metamers and their recognition by human observers. (a) Example
visual network model metamers synthesized to produce the same activations at a particular layer
of a particular network as the image in the top left. (b) Human recognition of visual network
model metamers. Recognition is good for early-layer metamers but poor for deep-layer metamers,
implying a divergence from human perceptual representations. Error bars are standard error of
the mean (SEM). (c) Example cochleagrams (time-frequency decompositions) for metamers from
an audio network trained to recognize words. (d) Human recognition of word-trained CNN model
metamers. As for vision-trained models, recognition is good for early-layer metamers but poor for
deep-layer metamers. Error bars are SEM.

6



Figure 4: Human recognition of audio network model metamers. Architectural manipulations that
reduce aliasing (left), training (middle), and task (right) all altered the recognizability of metamers.

a stride greater than one) there is visible ‘gridding’ in the metamers generated from early layers,
plausibly due to aliasing.

4.2 Audio network model metamers

The metamers from the word-trained network with an architecture based on [8] also quickly
become unrecognizable to humans (Figure 3c-d). Although not included in the human behavioral
experiment, we also generated example metamers from DeepSpeech and the VGGish Embedding
Network3. All metamers from DeepSpeech sound unnatural due to the input representation
(framed MFCCs). The metamers on the VGGish embedding network become difficult to recognize
by conv_4 (perhaps unsurprisingly, as we only generated metamers for speech, and the network
was not trained for speech recognition).

4.3 Model metamers from audio networks with modified task or architecture

We considered that the decrease in metamerism for humans might be due to aliasing (from
convolutional layers with strides greater than 1, and maxpooling layers). Consistent with this
idea, the modified architecture that reduces aliasing yielded model metamers that were more
recognizable to humans (Figure 4). We also considered the effect of training on metamerism.
Unlike, the trained networks, metamers from a random network with reduced aliasing remained
recognizable through all convolutional layers, only becoming unrecognizable at the top fully-
connected layer. This result suggests that task optimization adds invariances to the network that
can in some cases be different than human invariances. However, the human-recognizability of the
model metamers was task-specific – the same network architecture trained to classify the AudioSet
backgrounds produced metamers that became unrecognizable more quickly than when trained on
the word task. Training on the AudioSet classification in addition to the word task did not impair
metamerism (Figure 4). In all cases the metamers from deep layers remained unrecognizable to
humans, but the effects of these manipulations raise the possibility that appropriate choices of
training and architecture might produce a model that better accounts for human perception.

4.4 Metamer comparisons between ImageNet architectures

The metamer test can also be used to compare different architectures. We generated metameric
images for one ImageNet-trained network and then presented its metamers to a second network.
If the representational spaces between the two networks are the same, then the second network
should be able to correctly classify the metamers from the first network. For all three tested
networks, we find that the representations diverge from those of the other networks (Figure
5). Further, at late layers the model metamers are generally not even recognizable to the same

3Example audio metamers: http://mcdermottlab.mit.edu/jfeather/model_metamers/audio_metamers.html
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ImageNet-trained architecture trained with a different initialization (especially evident in the 1000
way classification task). Interestingly, image metamers for one network become non-metameric
for another network at roughly the same layer at which human performance diverges.

Figure 5: Network recognition of metamers from other networks and for networks with the
same architecture but different initializations. All networks were trained on ImageNet. Top row:
performance on 16-way classification task with metamers (using groups of the original ImageNet
classes, used for human recognition experiment in Figure 2). Bottom row: performance on original
ImageNet classification task with metamers.

Figure 6: Word-trained network recognition of metamers from other networks. Metamers were
generated from networks with the same architecture but trained on different tasks. Error bars are
bootstrapped SEM.

4.5 Metamer comparisons between audio networks trained on different tasks

In the audio domain, we tested whether model metamers generalized across training tasks and
random seeds (Figure 6). We measured performance of the word-trained network on metamers
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generated from networks with the same architecture but trained on a different task. Metamers gen-
erated from untrained networks were poorly recognized by the word-trained network, providing
further evidence that training alters the network invariances. Model metamerism did not transfer
between the word-trained network and the AudioSet-trained network, but metamers generated
from the network trained on both tasks were only slightly less metameric than metamers from
a word-trained network with weights initialized with a different random seed. This latter result
provides a proof of concept that it is possible for metamers to be shared across distinct systems.

5 Discussion

Our results show that model metamers generated from deep layers of artificial neural networks
are not metameric for humans or other networks. These findings demonstrate a divergence in the
invariances learned by neural networks from those present in human perceptual systems. They
also highlight the benefits of using model metamers as a network comparison tool. Our results
suggest that discrepancies between model and human representations, and between different
models, arise in later model stages, identifying those stages as targets for model refinement.
Indeed, we were able to modify some aspects of our audio-trained models to reduce aliasing and
increase human recognition of the model metamers. We also demonstrate that human recognition
of the metamers is dependent on the training task, possibly suggesting that the failure of humans
to recognize the model metamers may be a reflection of training on a single task (in this case,
recognizing speech but ignoring the background). Future work could investigate this by modifying
tasks to be more diverse, or more human-like, and assessing whether the improved models better
predict human behavior.

The transfer of metamers with different random seeds was surprisingly different between the
image- and audio-trained networks. Further investigation revealed that optimizing the cochlea-
gram representation rather than the audio yielded model metamers that were less recognizable
by a network trained on a different random seed (Figure S9). This result raises the possibility
that the shared "cochlear" pre-processing (consisting of fixed stages of convolution, pooling,
and non-linearities) enforces shared invariances between audio-trained networks with differ-
ent initializations. Future work could use metamerism to explore the use of shared early-layer
representations as a way to unify representations across models and potentially better model
human perceptual systems, for instance by adding additional biological constraints on the input
representation.

Model metamers are complementary to adversarial examples. Adversarial examples are metameric
(perceived similarly) for humans but are not metameric to the network they are derived for, demon-
strating that the network lacks some invariances present in humans. Model metamers conversely
demonstrate that invariances present in networks are not necessarily invariances for human
perception (or other networks). The relationship between adversarial and metameric images was
explored recently in [46], who concluded that the cross-entropy loss creates excessive invariance in
the final classification layer, leading to adversarial examples. We explore related issues but exam-
ined a more diverse set of network layers and explicitly performed human and network-network
experiments. Together, these lines of work suggest that techniques for reducing adversarial vul-
nerability may also improve the transfer of metamers across models. Moreover, metamers could
be useful for evaluating the adversarial vulnerability of a model. However, unlike adversarial
examples, which are specifically engineered to fool a particular system, model metamers are
constrained only to produce the same model activations (rather than to fool humans). The consid-
erable lack of metamer transfer to humans thus arguably represents a more substantial model
failure, and a useful measuring stick for models of perceptual systems.
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Supplement: Metamers of neural networks reveal divergence from human
perceptual systems

S1.1 Audio CNN training dataset

The auditory models were trained on the word recognition task described in [8], but with an
updated training set using segments from the Wall Street Journal [40] and Spoken Wikipedia
Corpora [41]. We screened the Wall Street Journal (WSJ) [40], TIMIT [47], and a subset of articles
from the Spoken Wikipedia Copora (SWC) [41] for appropriate audio segments (i.e., in which
words overlapped the center of a two second segment). Each segment was assigned the word class
label of the word occurring at the segment midpoint, and a speaker class label determined by the
speaker.

In hopes of constructing a dataset with speaker and word class labels that were approximately
independent, we selected words and speaker classes such that the exemplars from each class
spanned at least 50 unique cross-class labels (i.e., 50 unique speakers for each of the word classes).
This exclusion fully removed TIMIT from the training dataset. We then selected words and speaker
classes that each contained at least 200 unique utterances, and such that each class could contain
a maximum of 25% of a single cross-class label (i.e., for a given word class, a maximum of 25%
of utterances could come from the same speaker). These exemplars were subsampled so that
the maximum number in any word or speaker class was less than 2000. The resulting training
dataset contained 230356 unique segments in 432 speaker classes and 793 word classes, with
40650 unique segments in the validation set.

During training, the speech segments were randomly shifted in time and superimposed on
AudioSet [42] examples such that models could also be trained on the AudioSet task. We randomly
varied the SNR between the source (Speech) and the noise (AudioSet), uniformly distributed
between -10dB SNR and 10dB SNR. To minimize ambiguity, we removed any sounds under the
"Speech" or "Whispering" branch of the ontology. Since a high proportion of AudioSet clips
contain music, we achieved a more balanced set by excluded any clips that were only labeled as
the root "Music" with no specific branch labels, and the "Music" label was not used during the
AudioSet task. We also removed silent clips by first discarding everything tagged with a "Silence"
label then culling clips containing more than 10% zeros. This screening resulted in a training set
of 718625 unique background clips spanning 516 categories. During training, we cycled through
the sets of speech and AudioSet clips in random order, randomly sampling a two-second segment
from the AudioSet clip and adding it to the speech clip to form a training example. Validation
performance is reported on data constructed with the same training augmentations (specifically,
variable SNR and temporal shifts). CNN models were trained across two NVIDIA GPUs each with
11GB memory.

S1.2 Retrained ImageNet Description

The ImageNet-trained architectures used to generate metamers for the behavioral and network-
network experiments were downloaded from the TFSlim repository. The code at this repository was
also used to retrain ImageNet architectures for the random seed experiments. Architecture details
and preprocessing were matched to the downloaded checkpoints. The batch size, number of GPUs,
and learning rate that we used was likely different from that used for training the downloaded
checkpoints, which is potentially reflected the slightly worse training accuracy for some of the
retrained models S1.2.

ImageNet Network Top-1 Accuracy Top-5 Accuracy

VGG-19 72.0 90.6
Inception-V3 75.2 92.5
Resnet-101-V2 73.6 91.5

Table S1: Summary of retrained ImageNet architectures for random seed experiments.
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Table S2: Auditory CNN Architecture Definition ([8] with reshaped kernels to account for the
modified input size.

Layer Type Filters Size Stride

0 input - [211, 400] -
1 batch-normalization - - -
2 conv2d 96 [7, 14] [3, 3]
3 relu (conv_0) - - -
4 max-pooling2d - [2, 5] [2, 2]
5 batch-normalization - - -
6 conv2d 256 [4, 8] [2, 2]
7 relu (conv_1) - - -
8 max-pooling2d - [2, 5] [2, 2]
9 batch-normalization - - -
10 conv2d 512 [2, 5] [1, 1]
11 relu (conv_2) - - -
12 conv2d 1024 [2, 5] [1, 1]
13 relu (conv_3) - - -
14 conv2d 512 [2, 5] [1, 1]
15 relu (conv_4) - - -
16 avg-pool - [2, 5] [2, 2]
17 flatten - - -
18 fully-connected 4096 - -
19 relu (fc_intermediate) - - -
20 dropout, 0.5 - - -
21 fully-connected classification (logits) - - -

Table S3: Auditory CNN Architecture Definition with Reduced Aliasing

Layer Type Filters Size Stride

0 input - [211, 400] -
1 batch-normalization - - -
2 conv2d 96 [7, 14] [1, 1]
3 relu - - -
4 hpool (pool_0_0) - [12, 12] [3, 3]
5 hpool - [8, 8] [2, 2]
6 batch-normalization - - -
7 conv2d 256 [4, 8] [1, 1]
8 relu - - -
9 hpool (pool_1_0) - [8, 8] [2, 2]
10 hpool - [8, 8] [2, 2]
11 batch-normalization - - -
12 conv2d 512 [2, 5] [1, 1]
13 relu (conv_2) - - -
14 conv2d 1024 [2, 5] [1, 1]
15 relu (conv_3) - - -
16 conv2d 512 [2, 5] [1, 1]
17 relu (conv_4) - - -
18 avg-pool - [2, 5] [2, 2]
19 flatten - - -
20 fully-connected 4096 - -
21 relu (fc_intermediate) - - -
22 dropout, 0.5 training - - -
23 fully-connected classification (logits) - - -
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Network Metamer
Generation Layer

Number
Generated
Metamers

Number
features

Median
Spearman ρ

at Layer

Median
Spearman ρ
Null at Layer

Median
Spearman ρ

at Logits

Natural Sound 295 84400 - - -
Inverted Cochleagram 295 84400 0.998674 0.179334 0.999976
Word Trained (Aliased)

conv_0 292 913344 0.994434 0.265085 0.999764
conv_1 294 156672 0.980023 0.268980 0.998522
conv_2 293 78336 0.918038 0.170268 0.997408
conv_3 294 156672 0.956672 0.233818 0.999491
conv_4 295 78336 0.996275 0.039919 0.999997
fc_intermediate 291 4096 0.944563 0.079779 0.999487
logits 290 794 0.995809 0.139888 0.995809

Word Trained (Reduced Aliasing)
pool_0 291 913344 0.997652 0.561209 0.999733
pool_1 288 156672 0.989475 0.602778 0.997916
conv_2 292 78336 0.991182 0.205391 0.999851
conv_3 293 156672 0.989225 0.280117 0.999919
conv_4 295 78336 0.972968 0.048382 0.999996
fc_intermediate 290 4096 0.999361 0.147935 0.999813
logits 286 794 0.998158 0.147180 0.998158

Random (Reduced Aliasing)
pool_0 272 913344 0.997214 0.952567 0.999999
pool_1 278 156672 0.999251 0.962971 0.999997
conv_2 281 78336 0.999756 0.968697 0.999997
conv_3 279 156672 0.999791 0.963797 0.999997
conv_4 285 78336 0.999814 0.959306 0.999997
fc_intermediate 289 4096 0.999683 0.985956 0.999994
logits 293 794 0.999996 0.986279 0.999996

Trained Audioset (Reduced Aliasing)
pool_0 291 913344 0.998042 0.451898 0.999866
pool_1 290 156672 0.994289 0.454849 0.999089
conv_2 290 78336 0.986702 0.193952 0.999923
conv_3 291 156672 0.964322 0.137700 0.999967
conv_4 292 78336 0.966812 0.134290 0.999972
fc_intermediate 294 4096 0.997083 0.314034 0.999972
logits 292 517 0.999752 0.463126 0.999752

Trained Word and Audioset (Reduced Aliasing)
pool_0 285 913344 0.997472 0.555888 0.999618
pool_1 282 156672 0.990088 0.560066 0.996624
conv_2 286 78336 0.982321 0.179038 0.999580
conv_3 287 156672 0.976542 0.212300 0.999808
conv_4 288 78336 0.921548 0.047874 0.999943
fc_intermediate 292 4096 0.959105 0.232050 0.999751
logits 289 794 0.998801 0.146840 0.998801

Table S4: Summary of network metamer generation for audio network. The number of generated
network metamers varies by layer due to failed optimizations (measured by an overlap with the
null or not having the same maximum logit as the original) or due to node time outs during the
generation. Null distributions are constructed from 1,000,000 image pairs in the training set.
Metamers included in the experiment do not overlap with the null distributions, even in the case
of the Random (Reduced Aliasing) network layers where activations are strongly correlated for the
null. Metamers were generated on NVIDIA GPUs with 11-12GB of RAM.
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Network Metamer
Generation Layer

Number
Generated
Metamers

Number
features

Median
Spearman ρ

at Layer

Median
Spearman ρ
Null at Layer

Median
Spearman ρ

at Logits

Natural Image 256 89401 - - -
Natural Image Small 256 50176 - - -
Inception-V3 [44]

Conv2d_1a_3x3 256 710432 0.999980 0.724671 1.000000
Conv2d_2b_3x3 256 691488 0.999539 0.510215 0.999994
Conv2d_3b_1x1 244 426320 0.984236 0.335206 0.990008
Conv2d_4a_3x3 253 967872 0.995720 0.592758 0.998891
Mixed_5d 254 352800 0.992983 0.183679 0.999667
Mixed_6e 253 221952 0.950064 0.172391 0.998504
Mixed_7c 4 240 180224 0.756891 0.064566 0.961890
Logits 255 1001 0.999831 0.040540 0.999831

Resnet-101-V2 [45]
conv_1 256 1440000 1.000000 0.120331 1.000000
block_1 256 369664 0.999787 0.754825 0.999448
block_2 256 184832 0.999978 0.496263 0.999981
block_3 254 102400 0.999302 0.342142 0.999609
block_4 255 204800 0.994098 0.284898 0.999230
global 254 2048 0.902678 0.214380 0.998909
logits 254 1001 0.999659 0.047858 0.999659

VGG-19 [43]
conv1_2 256 3211264 0.999961 0.184170 1.000000
conv2_2 256 1605632 0.999152 0.066985 0.999998
conv3_4 256 802816 0.999155 0.108890 0.999995
conv4_4 255 401408 0.994657 0.035149 0.999994
conv5_4 256 100352 0.971722 0.022134 0.999980
fc6 256 4096 0.977821 0.031115 0.999993
fc7 256 4096 0.987343 0.043484 0.999980
fc8 (logits) 255 1000 0.999924 0.187791 0.999924

Table S5: Summary of network metamer generation for visual networks. 1 Although metamers
were generated for Mixed_7c, we did not include Mixed_7c metamers for human behavior or
model-model comparisons, as the optimization did not succeed to the same extent as the other
layers (detailed histogram in Figure S6)
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Figure S1: Spearman correlation coefficient for the word task CNN metamer generation compared
with a null correlation distribution obtained by correlating 1000000 random speech sounds from
the training set. Diagonal elements (with figure titles in red) correspond to the network metamer
generation layer. For a given metamer generation layer, metamer Spearman correlations for the
later network layers (further to the right) remain far from the null, while for earlier layers the
distributions begin to overlap with the null, demonstrating the the generated stimulus is physically
distinct from the natural sound.
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Figure S2: Network metamer Spearman correlation coefficients compared with the null correlation
distribution for the Work Task CNN (with reduced aliasing).
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Figure S3: Network metamer Spearman correlation coefficients compared with the null correlation
distribution for the Random Word Task CNN (with reduced aliasing). Even though the null
distribution correlations are very high for deep layers in this network, there is no overlap between
the null distributions and the distribution from model metamers used for the experiments.

19



Figure S4: Network metamer Spearman correlation coefficients compared with the null correlation
distribution for the Audioset Task CNN (with reduced aliasing).
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Figure S5: Network metamer Spearman correlation coefficients compared with the null correlation
distribution for the Word and Audioset Task CNN (with reduced aliasing).
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Figure S6: Model metamer Spearman correaltion coefficients compared with the null correlation
distribution for Inception-V3. Metamers were generated for layer Mixed_7c, however the opti-
mization did not succeed to the same extent as the other layers (with a median Spearman ρ below
0.9) and we thus do not report behavioral results for this layer.
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Figure S7: Network metamer Spearman correlation coefficients compared with the null correlation
distribution for VGG-19.
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Figure S8: Network metamer Spearman correlation coefficients compared with the null correlation
distribution for Resnet-V2-101.
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Figure S9: Transfer of metamers between the same architecture and task but different random
seeds when generating the metamer by optimizing the waveform (as in all our main experimental
conditions, because we needed to present the stimuli as sounds to human listeners) vs. the
cochleagram. The audio waveform-generated metamers transfer between two architectures
trained on different random seeds, while the cochleagram-generated metamers do not. This
suggests that including the cochleagram generation stages in the optimization imposes additional
constraints on the audio that restrict the representational capacity, increasing the likelihood of
transfer across models. Quality of cochleagram metamer generation is summarized in Table S1.2

Network Metamer
Generation Layer

Number
Generated
Metamers

Number
features

Median
Spearman ρ

at Layer

Median
Spearman ρ
Null at Layer

Median
Spearman ρ

at Logits

Natural Sound
orig 295 84400 - - -
visualization 295 84400 0.998674 0.179334 0.999976

Word Trained (Reduced Aliasing), Cochleagram Metamers
pool_0 293 913344 0.999119 0.561209 0.999974
pool_1 292 156672 0.998646 0.602778 0.999982
conv_2 293 78336 0.998229 0.205391 0.999989
conv_3 294 156672 0.995979 0.280117 0.999976
conv_4 293 78336 0.983156 0.048382 0.999993
fc_intermediate 290 4096 0.992512 0.147935 0.998165
logits 281 794 0.995095 0.147180 0.995095

Table S6: Summary of network metamer generation for audio metamers generated by optimizing
the cochleagram.
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