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Sensory neuroscience aims to build models that predict neural

responses and perceptual behaviors, and that provide insight

into the principles that give rise to them. For decades, artificial

neural networks trained to perform perceptual tasks have

attracted interest as potential models of neural computation.

Only recently, however, have such systems begun to perform at

human levels on some real-world tasks. The recent engineering

successes of deep learning have led to renewed interest in

artificial neural networks as models of the brain. Here we review

applications of deep learning to sensory neuroscience,

discussing potential limitations and future directions. We

highlight the potential uses of deep neural networks to reveal

how task performance may constrain neural systems and

behavior. In particular, we consider how task-optimized

networks can generate hypotheses about neural

representations and functional organization in ways that are

analogous to traditional ideal observer models.
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Introduction
A longstanding goal of sensory neuroscience is to build

models that reproduce behavioral and neural responses.

Models have historically originated from a range of

sources, including experimental observation [1–5], a

combination of biological inspiration and engineering

principles [6–9], and normative criteria (e.g. efficient

coding) applied to representations of natural sensory

signals [10–15].
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Models have also been inspired by the idea that they

should be able to perform tasks that organisms perform.

One use of tasks is to derive ideal observer models —

models that perform a task optimally under certain

assumptions [16]. Such models provide hypotheses for

biological systems based on the notion that biological

systems may be near-optimal for ecologically important

tasks. Behavioral predictions from ideal observer models

can also provide normative explanations of otherwise

puzzling perceptual phenomena, for instance by showing

how ‘illusions’ can be viewed as optimal inferences given

the statistics of the natural world [17].

Ideal observer models are provably optimal, but they are

typically derived analytically and are often restricted to

relatively simple domains where the task structure can be

precisely specified. An alternative approach is to learn

solutions to tasks from data. Supervised learning

approaches take a set of input-output pairs (e.g. images

and object labels or sounds and word labels) and modify a

system’s parameters to minimize the error between the

system’s output and the desired output. The resulting

models are usually not provably optimal because the task

is specified with training data — generalization perfor-

mance must be estimated empirically rather than derived

analytically. However, supervised learning allows models

to be constructed for a wide range of tasks, including some

that organisms perform in their everyday environments

(for which the derivation of ideal observed models may be

intractable).

Supervised learning approaches were adopted in

neurally inspired models as early as the 1960s [18]. They

were then adapted to multi-layer networks in the 1980s,

and the resulting wave of neural network research led to

optimism that learned representations could be used to

generate hypothesis about actual neural computation

[19–21]. However, neural network models at the time

were limited to relatively small-scale tasks and net-

works. The advent of inexpensive GPU-based comput-

ing along with assorted technical advances [22–24] led to

a resurgence of interest in neural networks in the engi-

neering world in the 2010s. For the first time, computing

systems attained human levels of performance on a

handful of challenging classification tasks in vision

and in speech recognition [25,26]. These successes

caused many neuroscientists to reassess the relevance

of such networks for the brain. In this paper, we discuss

the recent developments in this domain along with

reasons for skepticism.
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Deep neural networks
Artificial neural networks consist of sets of units with

connections defined by weights. The units and weights

are loosely modeled on neurons and synaptic efficacies,

respectively. A unit’s activation is computed by multi-

plying its inputs (the activations of other units) by the

associated weights, summing the results, and passing the

sum through a simple pointwise nonlinear function (e.g. a

sigmoid or, more commonly in recent years, a rectifying

function [22]). The input is usually some sort of sensory

signal (e.g. an image, sound waveform, or spectrogram)

and the output units are interpreted as probabilities of

target classes (e.g. digits, object identities, or phonemes).

Because the output activations are differentiable func-

tions of the network weights, the weights can be adjusted

via gradient descent to cause the output activations to

approach target values [27]. Given a training set of signals

and class labels, a network can thus be optimized to

minimize classification errors.

The most recent wave of neural networks add a few more

ingredients to this broader recipe (Figure 1). The first is

that the weights for subsets of units in a particular layer

are often constrained to implement convolution opera-

tions with a filter that is small relative to the input

dimensionality [28]. Units in a layer, therefore, apply

the same dot-product operation at different locations in a

signal, analogous to similarly structured visual receptive

fields at different retinotopic locations. A single layer of a

deep network will often implement dozens or hundreds
Figure 1
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of such filters. The second ingredient is the incorpo-

ration of pooling operations, in which the responses of

nearby units are aggregated in some way. Pooling opera-

tions downsample the preceding representation, and

thus can be related to classical signal processing, but

were also in part inspired by ‘complex’ cells in primary

visual cortex (that are thought to combine input from

multiple ‘simple’ cells) [8,29]. Convolution and pooling

were both introduced to artificial neural networks several

decades ago [28], but have become widely used in the

last decade. Recent networks have begun to incorporate

additional architectural motifs, such as ‘skip’ and

‘residual’ connections that violate feedforward organiza-

tion in various ways [30,31].

Each of the operations is defined by hyperparameters that

specify the network architecture, including the filter size,

the pooling region size, the pooling operation (e.g. taking

the maximum value within the pooling region), and the

order of operations. The cascade of these operations

instantiate sets of progressively more complex features

through the course of the network. If the network is

appropriately optimized through the selection of hyper-

parameters and via gradient descent on the network

weights, it may achieve good performance on the task

on which it was trained.

What might one learn about the brain from such a system?

The structure of an artificial neural network can in some

cases be mapped in a loose sense onto the structure of
ctify:
ntwise
inearity

ally: relu 
d Linear Unit)

Typically: max

Pool:
Aggregate
neighbors

Classification

(Additional
layers...)

Conv. Rectify Softmax...

Current Opinion in Neurobiology

ask) is passed through a cascade of simple operations, in which the

inates in a discriminative classification (e.g. of the object category

ause of downsampling, units in later layer have access to a greater

re maps (represented in the schematic by the stacked panels at each

downsampling that happens over the course of the network. The

etwork stages, yielding a greater diversity of unit response properties.

ith a linear filter (left), a pointwise nonlinearity such as rectification

rated on an example image.

www.sciencedirect.com



Deep neural network models of sensory systems Kell and McDermott 123
sensory systems, which are also often conceptualized as a

sequence of hierarchically organized distributed stages. It

is thus natural to wonder whether an artificial network

trained on an ecologically important task might exhibit

representations like those in biological sensory systems,

offering hypotheses about their inner workings. On the

other hand, although modern-day DNNs produce

remarkable levels of task performance, they differ in

many respects from actual neural circuits. Moreover,

the means by which they achieve good performance is

often resistant to interpretation. Here we will review

recent work comparing trained DNNs to brain and behav-

ior data, and we will consider what we can learn from such

comparisons.

Behavioral and brain responses predicted by
deep neural networks
One of the main motivations for considering deep neural

networks as models of perceptual systems is that they

attain (or exceed) human-level performance on some

object and speech recognition tasks. But for DNNs to

serve as models of biological sensory systems, they should

arguably also match detailed patterns of performance.

There are now several demonstrations of similar perfor-

mance characteristics for human observers and DNNs.

The most comprehensive comparisons have occurred for

visual object recognition, where DNNs trained to recog-

nize objects match human error patterns across object

categories [32–34] and viewpoint variations [35], exhibit

similar sensitivity to object shape [36], and predict object

similarity judgments [37] (Figure 2a). Despite the simi-

larity with human perception when analyzed in terms of

object categories, fine-grained discrepancies are evident.

In the one case where it has been measured, behavioral

similarity breaks down somewhat at the image-by-image

level – humans and deep networks make errors on differ-

ent images (Figure 2a) [34]. Some of these discrepancies

may reflect algorithmic differences. For instance, deep

networks may rely more on texture to classify images than

humans do [38–40]. Nonetheless, at the level of object

categories, the similarity in behavioral recognition is

strong. Such similarities appear in the auditory domain

as well, where speech recognition performance in differ-

ent types of background noise is likewise highly corre-

lated across humans and a trained DNN [41��]
(Figure 2b). Notably, the network models in these cases

are not fit to best match human behavior – they are

optimized only to perform visual or auditory tasks. The

similarities to human behavior arise simply as a conse-

quence of learning to perform the task.

What do these behavioral similarities reveal? One possi-

bility is that they simply reflect the limits of optimal

performance, such that any system attaining human levels

of overall performance would exhibit performance char-

acteristics resembling those of humans. It is also possible

that the behavioral similarity depends on similarity in the
www.sciencedirect.com 
internal representational transformations instantiated by

the DNN and human sensory systems. This second

possibility would imply that alternative systems could

produce comparable overall task performance but exhibit

detailed performance characteristics distinct from those

of humans. These possibilities are difficult to distinguish

at present given that we lack alternative model classes

that produce human-level performance on real-world

classification tasks.

Regardless of the interpretation, the observed behavioral

similarities between DNN models and humans motivate

comparisons of their internal processing stages. A natural

means of comparison is to test how well the features

learned by a network can be used to predict brain

responses. Although deep learning has also been used

to directly optimize models to predict empirically mea-

sured responses [42–45], the amount of neural data

needed to constrain a complex model may limit the

extent to which models can be built entirely from the

constraints of predicting neural responses. Here, we focus

instead on the use of neural predictions to evaluate DNN

models whose structure is determined exclusively by task

optimization. The most visible applications of deep neu-

ral networks to neuroscience have come from efforts

along these lines to predict neural responses in the ventral

visual stream. Before the advent of high-performing

DNNs, models of sensory systems were able to account

for neural responses of early stages of sensory processing

reasonably well [2,5], but were less successful for inter-

mediate or higher-level cortical stages.

Deep neural networks optimized to classify images of

objects provided the first models that could generate good

predictions of neural responses in high-level sensory areas.

One standard approach is to model the responses of indi-

vidual neurons, or of voxels measured with fMRI, with

linear combinations of the features from a particular layer of

a trained neural network [46,47]. The weights of the linear

mapping are fit to best predict responses to a subset of

stimuli, and the quality of the fit is evaluated by comparing

actual and predicted responses to left-out stimuli [48,49].

When evaluated in this way, DNN models provide far

better predictions of responses in inferotemporal cortex

than any previous model [50�,51–53] (Figure 2c), as well as

better predictions in early visual areas [45,53]. Alternative

types of brain-model comparisons, such as representational

similarity analysis [54], also find that DNN models best

replicate the representational structure evident in brain

measurements from IT [55�,56]. This success is not limited

to the visual system — DNNs optimized for speech and

music recognition tasks also produce better predictions of

responses in auditory cortex than previous models [41��]
(Figure 2d).

The ability of DNN features to generate good predictions

of neural responses raises questions about the purpose of
Current Opinion in Neurobiology 2019, 55:121–132
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Figure 2

(a)

(c) (d)

(f)

(b)

Word recognition:
Human vs. network

N
et

w
or

k 
pr

op
or

tio
n

w
or

ds
 c

or
re

ct

Human proportion
words correct

0.0

0.5

1.0

0.5 1.0

r2 : 0.92

Best predicting layer for each voxel Best predicting layer for each voxel

Median variance explained
across auditory cortex

Network layer
co

nv
1

no
rm

1
po

ol1

co
nv

2

no
rm

2
po

ol2

co
nv

3

co
nv

4

co
nv

5
po

ol5 fc
6

fc_
to

p
0.0

0.4

0.8

V
ar

ia
nc

e 
ex

pl
ai

ne
d

Spectrotemporal
model

Word branch
Genre branch

Random-filter
network

Shared
layers

Layer: conv4conv3 or lower conv5 or higher

RH

LH

Visual CNN & human behavior Auditory CNN & human behavior

Visual CNN & macaque physiology

(e) Visual CNN & human fMRI

Auditory CNN & human fMRI

Auditory CNN & human fMRI

Object-level similarity Image-level similarity

C
on

si
st

en
cy

w
ith

 h
um

an
s

Neural
networks

Control
models

Alex
Net

VGG

Goo
gle

Net

Res
Net

In
ce

pt
ion

-v
3

NYU
Pixe

ls

V1 
m

od
el

Neural
networks

Control
models

Alex
Net

VGG

Goo
gle

Net

Res
Net

In
ce

pt
ion

-v
3

NYU
Pixe

ls

V1 
m

od
el

0.0

1.0
Human
self-consistency

C
on

si
st

en
cy

w
ith

 h
um

an
s

0.0

1.0

V
ar

ia
nc

e 
ex

pl
ai

ne
d

V
ar

ia
nc

e 
ex

pl
ai

ne
d

Pixe
ls

V1 
m

od
el
SIF

T

PLo
S 2

00
9

HM
AX

V2-
lik

e

La
ye

r1

La
ye

r2

 L
ay

er
3

 L
ay

er
4

0.5

0.0

Predictions of ITPredictions of V4

Control
models

Control
models

Network
layers

Network
layers

Pixe
ls

V1 
m

od
el
SIF

T

PLo
S 2

00
9

HM
AX

V2-
lik

e

La
ye

r1

La
ye

r2

 L
ay

er
3

 L
ay

er
4

0.5

0.0

Current Opinion in Neurobiology

Task-optimized deep neural networks predict visual and auditory cortical responses and recapitulate real-world behavior.

(a) Deep networks exhibit human-like errors at the scale of visual object categories (left), but not at the scale of single images (right). Y-axis plots

the consistency of the network’s performance with that of humans, quantified with a modified correlation coefficient (see original paper for details

in Ref. [34]). Dashed gray indicates the noise ceiling (the test–retest consistency of the human data). Each bar plots the consistency for a different

model. Light blue bars are for control models: linear classifiers operating on a pixel array or a standard model of visual area V1 [102]. Dark blue

Current Opinion in Neurobiology 2019, 55:121–132 www.sciencedirect.com



Deep neural network models of sensory systems Kell and McDermott 125
the modeling enterprise. Although DNNs predict neural

responses, their inner workings are typically difficult to

describe or characterize, at least at the level of individual

units. However, DNNs can have well-defined structure at

the scale of layers: in ‘feedforward’ networks, each stage of

processing provides the input to the next, such that succes-

sive stages instantiate compositions of increasing numbers

of operations. When trained, this hierarchical structure

appears to recapitulate aspects of hierarchical structure

in the brain. Early stages of the ventral visual stream

(V1) are well predicted by early layers of DNNs optimized

for visual object recognition [45,52,53], whereas interme-

diate stages (V4) are best predicted by intermediate layers,

and late stages (IT) best predictedby late layers [50�,51–53]
(Figure 2c and e). This result is consistent with the idea that

the hierarchical stages of the ventral stream result from the

constraints imposed by biological vision tasks.

The organization of the ventral visual stream into stages

was uncontroversial before this modeling work was done,

and these results thus largely provide a validation of the

idea that a task-optimized hierarchical model can replicate

aspects of hierarchical organization in biological sensory

systems. However, they raise the possibility that one use of

DNN models could be to probe for hierarchical organiza-

tion in domains where it is not yet well established. We

recently adopted this approach in the auditory system,

showing that intermediate layers of a DNN optimized

for speech and music recognition best predicted fMRI

voxel responses around primary auditory cortex, whereas

deeper layers best predicted voxel responses in non-pri-

mary cortex [41��] (Figure 2f). This result was not merely a

reflection of the scale of the features computed at different

network stages: networks with identical architectures but

random (untrained) weights did not produce this corre-

spondence between cortical regions and network layers.

The results provided evidence for a division of the auditory

cortex into at least two stages, with one stage potentially

providing input into the next.
(Figure 2 Legend Continued) bars are for various artificial neural networks

and Inception-v3 [106]. From Rajalingham et al. [34].

(b) Speech recognition by deep networks and humans are similarly affected

plots network performance. Each point represents speech recognition perfo

From Kell et al. [41��].
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Deep networks have recently also been employed in anal-

ogous fashion in other domains, including the somatosen-

sory system [57], as well as the hippocampal and entorhinal

systems of the medial temporal lobe [58–60].

Using deep learning to reveal how tasks
constrain neural systems and behavior
Because deep learning provides a means to optimize sys-

tems for some real-world tasks, it may hold promise for

understanding the role of such tasks in shaping neural

systems and behavior. Specifically, deep neural networks

may be useful as stand-ins for ideal observer models in

domains for which an actual ideal observer is either intrac-

table to derive analytically, or unknowable (i.e. in cases

where the task structure is not well understood in theoreti-

cal terms). Like ideal observers, deep networks may help

reveal how task constraints shape brains and behavior, but

could enable such insights for a larger range of tasks.

In one recent example that illustrates this potential, a

neural network was trained to perform a simple visual

search task using a ‘retinal’ receptor lattice [61��]. This

lattice could be translated across an input image, in much

the same way that saccadic eye movements shift an image

across the retina. Each receptor on the lattice was param-

eterized by its position and spread, and these parameters

were optimized during training along with the rest of the

network. The result of the optimization procedure was a

receptor lattice that qualitatively replicated the organiza-

tion of the primate retina, with a high resolution ‘fovea’

surrounded by a low resolution periphery (Figure 3a).

Notably, this result did not occur when the system was

allowed to use additional actions, like ‘zooming’, that are

not present in the primate visual system. These results

are consistent with the possibility that the arrangement of

receptors on the retina may result from an evolutionary

optimization of the sampling of the visual world condi-

tioned on the use of eye movements.
: AlexNet [25], NYU [103], VGG [104], GoogLeNet [105], Resnet [30],

 by background noise. X-axis plots human performance and Y-axis

rmance in a particular type of background noise at a particular SNR.

ue visual areas V4 (left) and IT (right) better than comparison models.

control models: linear classifiers operating on pixel arrays, a model of

 HMAX [109], and a set of V2-like features [110]. Red bars are

l from Ref. [50�]). Intermediate network layers best predict intermediate

ins et al. [50�].
responses to natural sounds. A deep network trained to recognize

er than a baseline spectrotemporal filter model [9] (gray line). Y-axis

-axis). From Kell et al. [41��].
an fMRI responses in early and late stages of the visual cortical

White outlines indicate functionally localized regions of interest:

us (TOS), parahippocampal place area (PPA), extrastriate body area

erg et al. [53].

ck outlines denote anatomical parcellations of primary auditory cortex.

es; later layers best predict non-primary auditory cortical responses.
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Figure 3
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Neural networks as hypothesis generators for neuroscience.

(a) A neural network optimized to identify digits in a cluttered visual scene learns a retinal-like lattice with fine acuity within a ‘fovea’ and

decreased acuity in the periphery. Left: resulting lattice; circles indicate pooling regions of individual receptors. Right: Resolution (top) and acuity

(bottom) as a function of distance from center of lattice. Bottom: Receptor layout over training. From Cheung et al. [61��].
(b) Branched neural networks used to generate hypotheses about functional segregation and integration in the brain. Top: Example dual-task

architectures, ranging from one with two totally separate pathways on the left to an entirely shared single pathway on the right. Middle:

Performance on word recognition (left) and musical genre recognition (right) tasks as a function of number of shared stages. Bottom: Resulting

network architecture that shares as much processing as possible without producing a performance decrement. From Kell et al. [41��].
(c) Hypotheses for intermediate stages of neural computation generated from decoding. The decoding of a variety of category-orthogonal

variables (horizontal position, object scale, Z-axis rotation) improves as one moves deeper into a network trained to recognize visual object

Current Opinion in Neurobiology 2019, 55:121–132 www.sciencedirect.com
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Task-optimized neural networks have also been used to

understand perceptual learning experiments in which

participants are trained on psychophysical tasks (e.g.

orientation discrimination) [62,63]. Deep networks

trained on the same tasks used in laboratory experiments

have been shown to recapitulate a diverse set of neuro-

physiological and psychophysical findings. For instance,

some training tasks yield changes at either earlier or later

stages of sensory processing, and similar changes occur in

deep networks trained on these tasks. The precision of

the training task also alters network generalization to

new stimuli in ways that match results in humans. The

results suggest that the outcomes of perceptual learning

experiments can be understood as the consequences of

optimizing representations for tasks, even though the

mechanisms that instantiate learning in DNNs are likely

to be different than those in humans (see ‘Limitations and

Caveats’ section below).

Deep learning has also been used to explore how visual

attention mechanisms may affect task performance [64��].
The ‘feature similarity gain’ model of visual attention

proposes that attention scales a neuron’s activity in propor-

tion to its preference for the attended stimulus [65]. To test

this theory, this type of scaling was applied to unit activa-

tions from a deep neural network optimized to classify

visual objects [64��]. The authors found that the scaling led

to behavioral performance improvements similar to those

previously observed psychophysically under conditions of

directed attention. However, this result was only observed

at later layers of the network — applying the scaling to early

and intermediate network layers did not produce compa-

rable behavioral differences. This result illustrates how

deep neural networks can provide hypotheses about the

effect of internal representational changes on behavioral

performance.

Using optimized networks as stand-ins for ideal obser-

vers may also reveal normative constraints on the inte-

gration and segregation of function in sensory systems.

One approach is to train a single system to perform

multiple tasks, and to examine the amount of processing

that can be shared without producing a detriment in task

performance relative to that obtained with a single-task

system. The resulting model offers a hypothesis for how

a sensory system may be functionally organized, under

the assumption that sensory systems evolve or develop to

perform well subject to a resource constraint (e.g. the

number of neurons). We recently employed this

approach to examine the extent to which speech and

music processing might be expected to functionally
(Figure 3 Legend Continued) categories. From Hong et al. [75].

(d) Different stimulus properties are best decoded from different layers of a

Decoding of the spectrum peaks early. Top right: Decoding of spectrotemp

Word recognition performance increases over the course of the network for

branch. Bottom left: Decoding of a task-irrelevant feature (speaker identity) 
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segregate in the brain [41��]. We found that a network

jointly optimized for speech and music recognition

could share roughly the first half of its processing stages

across tasks without seeing a performance decrement

(Figure 3b). This result was consistent with fMRI evi-

dence for segregated pathways for music and speech

processing in non-primary auditory cortex [66], and

suggested a computational justification for this organiza-

tion. The methodology could be more broadly applied to

address current controversies over domain specificity

and functional segregation [67,68].

Another potential application of deep neural networks is

to suggest hypotheses for intermediate sensory repre-

sentations. Intermediate sensory stages have long posed

a challenge for sensory neuroscience because they are

often too nonlinear for linear systems tools to be appli-

cable, and yet too distant from task read-out for neural

tuning to directly reflect behaviorally relevant variables.

Model-driven hypotheses of intermediate stages could

thus be particularly useful. Individual units of deep

networks are typically challenging to interpret, but could

become more accessible with new developments in

visualization [69–72], or from constraints on models that

may aid interpretability, such as cost functions that bias

units within a layer to be independent [73,74].

Alternatively, insight into intermediate representations

might be best generated at the population level, by

assessing the types of information that can be easily

extracted from different stages of a network. A standard

approach is to train linear classifiers on a layer’s activa-

tions, and then measure performance on a validation set.

One recent application of this methodology tested

whether invariance to object position is a prerequisite

for object recognition. In DNNs trained to categorize

visual objects, later layers provided better estimates than

earlier layers of various ‘category-orthogonal’ variables,

such as the position of an object within an image or its

overall scale [75] (Figure 3c). Notably, a similar pattern of

results was found in the primate visual system, with

position and scale more accurately decoded from IT than

V4 [75]. Decoding also reveals biologically relevant rep-

resentational transformations in audio-trained networks.

For instance, in a DNN trained to recognize spoken

words and musical genres, the frequency spectrum of a

sound was best estimated from the earliest layers,

whereas spectrotemporal modulations were best esti-

mated from intermediate layers [41��], consistent with

their hypothesized role in primary auditory cortex [9,76]

(Figure 3d).
 network trained to recognize words and musical genre. Top left:

oral modulation power peaks in intermediate layers. Bottom right:

 the task-relevant branch, but decreases in task-irrelevant (genre)

peaks in late-to-intermediate layers. From Kell et al. [41��].
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Limitations and caveats
The renaissance of deep neural networks in neuroscience

hasbeenaccompaniedbyskepticismregarding the extent to

whichDNNs could be relevant to the brain. Mostobviously,

current DNNs are at best loosely analogous to actual neural

circuits, and soatpresent do notprovide circuit-levelmodels

of neural computation. These limitations alone render them

inappropriate for many purposes. Moreover, if the details of

neural circuitry place strong constraints on neural represen-

tations and behavior, DNNs could be limited in their ability

to predict even relatively coarse-scale phenomena like

neural firing rates and behavior.

Some of the discrepancies between artificial neural net-

works and human sensory systems can be addressed with

modifications to standard DNNarchitectures.For instance,

recent work has incorporated recurrent connections to the

feedforward neural networks often used to model the

ventral visual pathway [77]. Such recurrent connections

may be important for predictingresponses tonatural images

that are not well accounted for by feedforward models

[78��], including those with occlusion [79]. However, it is

less obvious how to incorporate other aspects of biological

neural circuits, even those as fundamental as action poten-

tials and neuromodulatory effects [80–83].

As it currently stands, deep learning is also clearly not an

account of biological learning. Most obviously, biological

organisms do not require the millions of labeled examples

needed to train contemporary deep networks. Moreover,

whatever learning algorithms are employed by the brain

may not have much similarity to the standard backpro-

pagation algorithm [84�,85], which is conventionally con-

sidered biologically implausible for a variety of reasons

(e.g. the need to access the weights used for feedforward

computation in order to compute learning updates).

Another challenge for the general notion that task-driven

training can reveal neural computation is that as DNN

systems have increased in size, they have begun to exceed

human levels of performance, at least on particular com-

puter vision tasks. Moreover, neural predictions from

these very high-performing networks has plateaued or

even declined in accuracy, as if the networks have begun

to diverge from biologically relevant solutions [86]. This

divergence could reflect differences between the specific

tasks used to optimize current DNNs and those that may

have constrained biological systems over the course of

evolution and development. Alternatively, additional

constraints could be needed to obtain brain-like systems

under task optimization. Possibilities include a resource

limitation (e.g. on the number of neurons or on metabolic

activity) or constraints imposed by the historical trajectory

of the brain’s evolution.

Some of the differences between DNNs and human

observers may be due to violations of traditional signal
Current Opinion in Neurobiology 2019, 55:121–132 
processing principles by DNNs. The sampling theorem

dictates that if signals are not lowpass filtered before

downsampling, they will be ‘aliased’ — low frequencies

will be corrupted by high frequencies present in the signal

before downsampling. Because contemporary deep net-

works typically employ downsampling operations (max

pooling and/or strided convolution) without the constraint

of a preceding lowpass filter, aliasing is likely to occur

[87,88��]. It is perhaps remarkable that aliasing apparently

does not prevent good classification performance, but it

may impair generalization [88��] and produce representa-

tions that diverge from those of biological systems [89].

One example of such divergences can be found in

demonstrations that DNNs can be fooled by

‘adversarial’ stimuli [90,91]. These stimuli are derived

by using the gradients of the output units of a network

with respect to its input to generate small perturbations

to an input signal that cause it to be misclassified. In

principle, such adversarial stimuli could be generated for

a human perceptual system if one had the complete

description of the system necessary to derive the per-

turbations — obviously beyond reach for the moment.

But if the network were a correct description of a

biological perceptual system, then its adversarial stimuli

should also be perceived differently by humans. In

practice, the perturbations generated in this way for

high-performing DNNs are typically imperceptible to

humans (though in some cases humans exhibit some

sensitivity to such perturbations [92]). One potential

explanation could be that the exact perturbations

needed to produce this effect depend on minor idiosyn-

crasies of a model, such that adversarial perturbations for

one system would not generalize to other systems.

However, adversarial examples tend to have similar

effects on networks trained from different initial condi-

tions, and with different architectures, suggesting there

may be a more fundamental and consistent difference

with biological systems. Notably, adversarial images are

not specific to DNNs — they are observed even for

linear classifiers [91]. One speculative possibility is that

they may reveal a limit of models exclusively trained on

classification tasks [93].

The most fundamental difference between current DNNs

and human perceptual systems may lie in the relative

inflexibility of artificial networks — a trained network is

typically limited to performing the tasks on which it is

trained. Representations learned for one task can transfer to

others [75,94,95], but usually require training a new classi-

fier with many new training examples. This rigidity seems

at odds with the fact that humans can answer a wide range of

queries when presented with a novel auditory or visual

scene, even questions that they may not have ever previ-

ously been asked [96]. Observations along these lines have

led some to suggest that humans have an internal model of

the world, and infer generative parameters of this model
www.sciencedirect.com
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when presented with a stimulus,allowingthem toperform a

wide range of tasks [97].

Many of these limitations could be addressed by combin-

ing DNNs with generative models of how structures in

the world give rise to sensory data. Such internal models

could in principle explain the flexibility of our perceptual

abilities, but inferring the parameters needed to explain a

stimulus is often hugely computationally expensive. One

appealing idea is to leverage DNNs to generate initial

estimates of generative variables that can accelerate

inference — given a generative model, a DNN can be

trained to map samples (e.g. images) to their underlying

parameters (e.g. 3D shape descriptors) [98,99�]. This

approach raises the question of how the generative model

itself would be acquired, but in principle a feedforward

recognition network could be jointly trained in parallel

with a generative model [100,101]. Such marriages are

appealing directions to explore, both for next-generation

AI systems and models of biological perception.
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