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Events and objects in the world must be inferred from sensory
signals to support behavior. Because sensory measurements are
temporally and spatially local, the estimation of an object or
event can be viewed as the grouping of these measurements
into representations of their common causes. Perceptual group-
ing is believed to reflect internalized regularities of the natural
environment, yet grouping cues have traditionally been identi-
fied using informal observation and investigated using artificial
stimuli. The relationship of grouping to natural signal statistics
has thus remained unclear, and additional or alternative cues
remain possible. Here, we develop a general methodology for
relating grouping to natural sensory signals and apply it to derive
auditory grouping cues from natural sounds. We first learned
local spectrotemporal features from natural sounds and mea-
sured their co-occurrence statistics. We then learned a small set
of stimulus properties that could predict the measured feature
co-occurrences. The resulting cues included established group-
ing cues, such as harmonic frequency relationships and temporal
coincidence, but also revealed previously unappreciated grouping
principles. Human perceptual grouping was predicted by natu-
ral feature co-occurrence, with humans relying on the derived
grouping cues in proportion to their informativity about co-
occurrence in natural sounds. The results suggest that auditory
grouping is adapted to natural stimulus statistics, show how these
statistics can reveal previously unappreciated grouping phenom-
ena, and provide a framework for studying grouping in natural
signals.

cocktail party problem | natural sound statistics | source separation

Sensory receptors sample the world with local measurements,
integrating energy over small regions of time and space.

Because the objects and events on which we must base behav-
ior are temporally and spatially extended, their inference can be
viewed as the process of grouping these measurements to form
representations of their underlying causes in the world. Group-
ing has been viewed as a fundamental function of the nervous
system since the dawn of perceptual science (1, 2).

Grouping mechanisms are presumed to embody the probabil-
ity that sets of sensory measurements are produced by a common
cause in the world (3–5). Yet, dating back to the Gestalt psy-
chologists, grouping has most often been studied using artificial
stimuli composed of discrete elements (6, 7)—arrays of dots or
line segments in vision or frequencies in sound. One challenge
in relating such research to the real world is that it is often dif-
ficult to describe natural images and sounds in terms of discrete
elements. As a result, grouping phenomena have been related
to natural stimulus statistics in only a handful of cases where
human observers have been used to label local image features
(8–12). Grouping research has otherwise been limited to testing
intuitively plausible grouping principles that can be instantiated
in hand-designed artificial stimuli.

Grouping is critical in audition, where it is believed to help
solve the “cocktail party problem”—the problem of segregating
a sound source of interest from concurrent sounds (7, 13–
15) (Fig. 1). As in other sensory systems, auditory grouping is

believed to exploit acoustic regularities of natural stimuli, such
as the tendency of frequencies to be harmonically related (16–19)
or to share a common onset (20–24). However, because acoustic
grouping cues have traditionally been identified using informal
observation and investigated using simple synthetic stimuli, much
remains unknown. First, the extent to which known principles of
perceptual grouping are related to natural stimulus statistics is
unclear. Second, because the science of grouping has thus far
been largely driven by human intuition, additional or alternative
grouping principles remain a possibility.

We sought to link auditory grouping principles to the structure
of natural sounds by measuring feature co-occurrences in natural
signals and assessing their relation to perception. Our approach
is distinguished from that of prior work in being independent
of prior hypotheses about the underlying features or regularities
that might relate to grouping. We first derived a set of primi-
tive auditory patterns by learning a dictionary of spectrotemporal
features from a corpus of natural sounds (recordings of speech
and musical instruments) using sparse convolutional coding (25,
26). We then measured co-occurrence statistics for these features
in the natural sound corpus. We found that superpositions of
naturally co-occurring features were more likely to be heard as
a single source than pairs of features that do not commonly co-
occur, indicating that the auditory system has internalized the
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Fig. 1. Auditory perceptual grouping. Multiple sources in the world gener-
ate signals that sum at the ear. Local sensory measurements must then be
grouped to form source inferences.

co-occurrence statistics over evolution or development. We next
developed a method to summarize the observed co-occurrence
statistics with a set of cues. The cues defined stimulus proper-
ties predictive of whether features were likely to co-occur. To
facilitate their interpretation, the cues were instantiated as linear
templates. The learned templates captured traditional grouping
cues, such as harmonicity and common onset, but also revealed
grouping principles not typically noted in the auditory group-
ing literature. Our results suggest that auditory grouping cues
are adapted to natural stimulus statistics and that considering
these statistics can reveal previously unappreciated aspects of
grouping.

Results
In order to study grouping in natural sound signals without
relying on a prior hypothesis of the features or principles
that would be involved, we used convolutional sparse coding
(25, 26) to first learn a set of features from which natural
sounds can be composed. These features were learned from
recordings of single sources represented as “cochleagrams”—
time–frequency decompositions intended to approximate the
representation of sound in the human cochlea. We conceive
of distinct sound sources as generated by distinct physical pro-
cesses in the world and formed a corpus of single sources
from recordings of speech or individual musical instruments.
Speech and instruments clearly do not exhaust the space of nat-
ural sounds, but they are the primary sound classes for which
single-source recordings are available in large quantities, as is
critical for the stable measurement of the statistical proper-
ties that we study here. Speech and instruments also utilize a
fairly wide range of physical sound-producing processes (rigid
objects excited in different ways, aerodynamic events, periodic
and aperiodic energy, etc.), and therefore, it seemed plausible
that they might exhibit most of the statistical properties relevant
to grouping.

The spectrotemporal features were optimized to reconstruct
the training corpus given the constraints of nonnegativity (on
both feature kernels and their coefficients) and sparsity (on the
coefficients). These constraints produce features that can be
thought of as “parts” of the cochleagram, similar to nonnega-
tive representations of natural images (27). The learned features
capture simple and local time–frequency patterns, including sin-
gle frequencies, sets of harmonic frequencies, clicks, and noise
bursts (Fig. 2A), loosely analogous to the spectrotemporal fea-
tures that might be detected in early stages of the auditory system
(28). The features reconstructed the training corpus relatively
well (Fig. 2B), and they did so significantly better than 3 alter-
native, nonlearned feature sets (Fig. 2C) (significantly different
by t tests, t > 100, P < 0.001 in all cases). We note that features
could also be obtained via alternative methods (for instance, via
optimization for tasks), which could yield distinct features (29–
31). Examples of spectrotemporal features and stimuli used in all
experiments can be found on the accompanying webpage (32).

Each feature can itself be viewed as an initial elementary
stage of grouping sound energy likely to be due to a single
source. However, because natural sound signals are represented
with many such features (as a set of time-varying, sparsely acti-
vated coefficients) (Fig. 2B), these features must in turn be
grouped in order to estimate sound sources from the feature
representation.

Feature Co-occurrence Statistics in Natural Sounds. After a signal
is decomposed into a feature representation, the problem of
grouping thus consists of determining which features are acti-
vated by the same source—an inherently ill-posed inference
problem (Fig. 1). We measured co-occurrence statistics that
should constrain this inference. In principle, the inference of
sources from feature activations could be constrained by the
full joint distribution of all features. In practice, this distribu-
tion is challenging to learn and to analyze (26). Instead, we
measured dependencies between pairs of features, which are
tractable to measure and analyze and which we found to contain
rich structure. The key idea was to compare the co-occurrence
of features within the same source with the co-occurrence of
features in different sources on the grounds that feature acti-
vations should be grouped together if they co-occur in a partic-
ular configuration substantially more often in the same source
than otherwise.

To measure co-occurrences for features in the same source,
we took encodings of large corpora of single sources—speech
and instrument sounds—and for each feature f (Fig. 3A), com-
puted the average activations of all other features at each of a

A B

C

Fig. 2. Spectrotemporal feature decompositions of natural sounds. (A)
Spectrotemporal features optimized to reconstruct the corpus of speech
and instrument sounds. Two example features are shown at higher reso-
lution. (B) Example speech excerpt (row 1) and its reconstruction (row 2)
from time-varying feature coefficients (row 3). The contribution of the 2
example features from A to the reconstruction are shown in rows 4 and
5. The cochleagrams show the convolution of the feature kernel with its
time-varying coefficient (shown below each cochleagram). SNR, signal-to-
noise ratio. (C) Reconstruction quality of the natural sound corpus. Features
learned from natural sound statistics (bar 1) represent cochleagrams with
more accuracy than nonlearned features (bars 2 to 4). Error bars plot
standard deviation. Asterisks denote statistical significance of t tests (vs.
learned). ***P < 0.001. T.-F., time–frequency.
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Fig. 3. Co-occurrence statistics of spectrotemporal features. (A) Example
feature of interest. (B) Average conditional activations of other features
conditioned on the example feature of interest exceeding an activation
threshold. (C) Average marginal activations of other features (averaged over
time and across the corpus). These are by definition constant over time. (D)
Coactivation matrix for the feature of interest formed by the logarithm of
the ratio of the mean conditional and marginal activations of the other fea-
tures. (E) Coactivation tensor formed from the coactivation matrices of all
features. (F) Positive and negative tensor entries averaged across features.
The strength of association between features decreases with their time off-
set as expected. (G) Examples of features with high and low association
strength with the feature from A. (Left) Features colored red and blue have
high and low association strength, respectively, with the example feature of
interest from A. (Right) Mixtures of the selected features with the example
feature of interest from A.

set of time offsets, conditioned on the activation of the feature
f being high (exceeding the 95th percentile of its distribution of
activations) (Fig. 3B). This coactivation measure is high for fea-
tures that tend to be activated at a particular time offset when
the selected feature f is activated. To measure co-occurrence for
features in distinct sources, we assumed distinct sound sources
in the world to be independent (i.e., that the joint distribu-
tion of the 2 source signals is equal to the product of their
marginal distributions). This assumption is not always correct,
as when 2 speakers are conversing and what one person says
is in response to another or when 2 musical instruments are
played in coordination. However, the independence assumption
nonetheless seems likely to approximate what holds much of
the time. Given that assumption, the distribution of activations
of one feature conditioned on the activation of another can be
approximated by its marginal distribution (Fig. 3C). Thus, as
a summary measure of the co-occurrence of one feature and
another, we computed the ratio of the mean conditional acti-
vation of the feature to its mean marginal activation (the mean
feature activation averaged over time and across the entire train-
ing corpus). Dividing by the mean marginal activation can also
be viewed as a normalization step that prevents the resulting

measure from being dominated by how often a feature occurs
in the training corpus. In all subsequent analyses, we display
the logarithm of this ratio, which we term the “association
strength.” We consider a feature as co-occurring or not with the
selected feature depending on whether the association strength is
positive or negative.

This analysis yielded a matrix for each feature (containing
its association strength with each other feature at each of a
range of time offsets) (Fig. 3D) and thus, a 3-dimensional ten-
sor for the entire dictionary (Fig. 3E). These matrices are not
obviously structured when inspected visually, apart from con-
taining dependencies that on average grow weaker as the time
offset between features increases (Fig. 3F). However, the ten-
sor can be used to draw pairs of features that are strongly
coactivated in the training corpus or not, and these exhibit intu-
itively sensible relationships. The examples in Fig. 3G for the
harmonic feature shown in Fig. 3A reveal that other features
that strongly co-occur with it share a common fundamental
frequency (f0) and fall in the same general frequency range.
Conversely, features that are unlikely to co-occur with the exam-
ple harmonic feature are those that are misaligned in f0 or
that are far apart in frequency. These examples suggest that
the co-occurrence statistics can capture reasonable relations
between features, but it was not obvious to what extent the full
co-occurrence tensor would have been internalized by human
listeners and to what extent it would contain comprehensible
structure.

Perceptual Grouping Reflects Co-occurrence Statistics. To test
whether human listeners have internalized the measured co-
occurrence statistics, we conducted a psychophysical experiment
with stimuli generated by superimposing sets of features (exper-
iment 1). On each trial, participants heard 2 such stimuli and
judged which of them contained 2 sound sources (Fig. 4A). One
feature pair was selected from the feature pairs with an associ-
ation strength in the top 1% of all co-occurring pairs, and the
other was from the feature pairs with an association strength in
the lowest 5% of the non–co-occurring pairs (Fig. 4B) (i.e., the
most negative; the inclusion thresholds were asymmetric because
the distribution of associations strengths was asymmetric about
0). To set a ceiling level on task performance, in a second condi-
tion, one stimulus was an excerpt of a single speech or instrument
sound, while the other was a mixture of 2 such excerpts. Because
natural sounds contain a superset of the dependencies mea-
sured in the co-occurrence tensor, performance on this condition
should provide an upper limit on performance for the task with
feature superpositions.

Human listeners reliably identified unlikely combinations of
features as sounds consisting of 2 sources (Fig. 4B, left bar)
[t test, t(14) = 10.95, P < 0.001], only slightly below the level for
speech mixtures (Fig. 4B, right bar) [t(14) = 93.75, P < 0.001].
This result suggests that humans have internalized aspects of the
co-occurrence tensor and use the learned statistics for perceptual
grouping.

To assess the extent to which the perceptual sensitivity was
specific to natural co-occurrence statistics, we ran a control
experiment using stimuli derived from a co-occurrence ten-
sor measured from synthetic sound textures (33) (experiment
2). The textures were synthesized to match the power spec-
trum and modulation spectrum of speech but were otherwise
unstructured (Materials and Methods). Co-occurrence statistics
were measured using the same features learned from the nat-
ural sound corpus. The experiment thus controlled for the
possibility that the features and their encoding process might
themselves create dependencies that could support task perfor-
mance, independent of natural signal statistics. In contrast to
stimuli from the natural co-occurrence tensor, the control stim-
uli produced near-chance performance (Fig. 4C, right bar) [not
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Fig. 4. Perceptual sensitivity to natural feature co-occurrence statistics. (A) Stimulus from an example trial. Listeners heard 2 feature pairs and
judged which consisted of 2 sources. (B) Conditions and results of experiment 1. Listeners discriminated 1) feature pairs assembled using natural co-
occurrence statistics or 2) mixtures from single excerpts of speech and/or instruments. Asterisks denote statistical significance of t tests (vs. chance).
***P < 0.001. Here and in C–E, error bars plot SEM. (C) Results of experiment 2. Listeners discriminated feature pairs assembled using 1) natu-
ral co-occurrence statistics or 2) co-occurrence statistics measured from artificial sound textures. The textures were synthesized to match some of
the statistics of speech (related to power and modulation spectra). Asterisks denote statistical significance of t tests (vs. chance or between condi-
tions). ***P < 0.001. (D) Conditions and results of experiment 3. Listeners discriminated feature pairs drawn from different ranges of the coactivation
continuum, producing large, medium, or small coactivation differences between the 2 pairs presented on a trial. Asterisks denote statistical sig-
nificance of repeated measures ANOVA comparing performance in the 3 conditions (***P < 0.001). (E) Example trial and results of experiment
4. On each trial, listeners heard a feature pair and judged whether it consisted of 1 or 2 sources (Left). Conditions corresponded to association
strength intervals defined for experiment 3. Asterisks denote statistical significance of repeated measures ANOVA comparing performance in the
6 conditions (***P < 0.001).

significantly different from chance, t(14) = 0.1748, P = 0.86
and significantly worse than the natural stimuli, t(14) = 10.57,
P < 0.001]. The results suggest that grouping judgments depend
on internalized statistics that are to some extent specific to
natural sounds.

To further probe the extent to which perceptual grouping
judgments would reflect natural co-occurrence statistics, we
generated pairs of feature pairs with association strength dif-
ferences that fell into 1 of 3 ranges (experiment 3; each range
differed from that used in experiment 1) (Fig. 4D). If listen-
ers have internalized natural feature co-occurrences, perfor-
mance should scale with the association strength difference.
As shown in Fig. 4D, performance was best when the associa-
tion strength difference was large and declined as it decreased,
yielding a main effect of the association strength difference
[F(1.39, 19.45) = 17.46, P < 0.001]. This result is further consis-
tent with the role of natural co-occurrence statistics in perceptual
grouping judgments.

To test whether the association strength would correctly pre-
dict whether individual stimuli were heard as 1 or 2 sources, we
conducted an additional experiment in which individual stimuli
were judged to be 1 or 2 sources (experiment 4). The stimuli
were superpositions of pairs of features with association strength
that was drawn from bins ranging from negative to positive val-

ues. As shown in Fig. 4E, the tendency to hear a stimulus as
a single sound was high for feature combinations with positive
association strengths and low for features with negative associa-
tion strength [F(5, 80) = 82.35, P < 0.001]. The relation between
the empirical pairwise association of features and their percep-
tion as a single source provides further evidence for the role of
natural co-occurrence statistics in perceptual grouping.

Predicting Grouping Cue Strength from Natural Statistics. Grouping
is typically conceptualized in terms of cues—stimulus properties
that are predictive of grouping and that could thus help to solve
the inference problem at the heart of grouping. We sought to
relate grouping cues to co-occurrence statistics both to evaluate
the statistical validity of traditionally proposed cues and to learn
cues de novo from statistics. We formalized a grouping cue to
be a function of 2 stimulus features whose value depended on
whether the 2 features are likely to belong to the same source
or not (Fig. 5A). We quantified the statistical strength of a cue
using the co-occurrence tensor, measuring the cue for all pairs
of strongly positively associated features and all pairs of strongly
negatively associated features and then quantifying the difference
in the distributions of cue values for the 2 sets (Fig. 5A).

We first considered the 2 most commonly cited cues from tra-
ditional accounts of auditory grouping: common onset and offset

25358 | www.pnas.org/cgi/doi/10.1073/pnas.1903887116 Młynarski and McDermott
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Fig. 5. Grouping cue evaluation. (A) Cues are defined as functions of fea-
ture pairs that should differ depending on whether the features are likely
to be due to the same source. Cue strength is quantified as the separation
of cue distributions for co-occurring and non–co-occurring feature pairs.
(B) Evaluation of the cue strength of common onset and common offset.
Left and Center illustrate cue measurement for an example feature pair
and the resulting cue distributions for co-occurring and non–co-occurring
feature pairs (the top 75% of positive and bottom 75% of negative of fea-
ture pairs when ranked according to their association strength). Logarithmic
axis serves to reveal the difference between the tails of the distribu-
tions. Right plots the Bhattacharya distance, a summary measure of the
separation of the cue distributions for co-occurring and non–co-occurring
feature pairs, predicting that common onset should be a stronger grouping
cue than common offset. Error bars plot standard deviation of the boot-
strap distribution (obtained by resampling from the sets of feature pairs).
Asterisks denote statistical significance of bootstrap test between condi-
tions (***P < 0.001). (C) Evaluation of the cue provided by differences in
fundamental frequency (f0), which is small for co-occurring feature pairs
and large for non–co-occurring pairs. This analysis was restricted to fea-
tures that were above a criterion level of periodicity and that thus had
a well-defined f0.

(20–24) and common fundamental frequency (16–19). We mea-
sured onsets and offsets of each feature as the time points where
their broadband envelope exceeded or dropped below a thresh-
old value (Fig. 5 B, Upper Left) and measured the difference in
onset or offset time for all pairs of strongly positively or neg-
atively coactivated features (corresponding to the top 75% of
positive entries and bottom 75% of negative entries in the asso-
ciation strength tensor) (Fig. 5 B, Lower Left). Both onset and
offset differences were smaller for coactivated features, but the
difference was larger for onsets than offsets (quantified with the
Bhattacharya distance) (Fig. 5 B, Right). This difference provides
an explanation for the documented difference in the perceptual
effect of common onset and offset (whereby grouping from off-
sets is weaker than grouping from onsets) (22). Similarly, the f0
difference between features was smaller for coactivated features
(Fig. 5C) (measured in features that exceeded a criterion level
of periodicity such that the f0 was well defined). These anal-
yses provide evidence that conventionally cited grouping cues
have a sound basis in natural signal statistics.

Grouping Cues Derived by Summarizing Co-occurrence Statistics. We
next sought to derive grouping cues from the co-occurrence ten-
sor in order to explore the cues that would emerge independent
of human intuition. We searched for acoustic properties that
would predict the association strength of feature pairs, restrict-
ing the properties to those defined by linear templates in order
to facilitate their interpretability. The features were optimized
to classify features as belonging to 1 or 2 sounds, as this is

arguably the task faced by the auditory system. The resulting dis-
criminative model learned templates in the time–frequency and
modulation domains whose dot product with a spectrotemporal
feature kernel was similar for frequently co-occurring features
but different for non–co-occurring features.

Specifically, given 2 features, the model computed their pro-
jections onto a template. The “cue value” was defined as the
magnitude of the difference in the 2 projections. The model used
this value to predict whether the features have high association
strength or not (via logistic regression) (Fig. 6A). The 2 domains
considered (time–frequency and modulation planes) are the
most common representations in which to examine sound; the
modulation plane is simply the 2-dimensional power spectrum of
the time–frequency representation of a sound (34). Templates
were learned via gradient descent to maximize discrimination
of feature pairs with high and low association strength (roughly
the 10% most positive and 10% most negative entries in the
tensor) (Materials and Methods). Learning occurred sequentially
for each template, adding a new template at each iteration until
performance reached an asymptote.

The learning procedure resulted in 4 templates, 2 in each
of the time–frequency and modulation planes (Materials and
Methods and Fig. 6 B–E) (additional templates only marginally
improved performance). We emphasize that the goal of the
model was not to fully capture human source separation (which
seems likely to require a substantially more complicated model)
but rather, to test whether a set of simple acoustic properties
would capture important aspects of human auditory group-
ing. Despite the limitations inherent to linear templates, the 4
templates were sufficient to differentiate co-occurring from non–
co-occurring features with reasonable accuracy (81%), indicating
that they captured a substantial amount of the variance in feature
co-occurrence.

Even though the templates were derived purely from co-
occurrence statistics without regard for prior hypotheses or
human intuition, inspection of the learned templates reveals
interpretable structure. The first cue template (Fig. 6 B, Left) can
be interpreted as computing a spectral centroid, implying that
features with similar frequency content are likely to co-occur. We
quantified this effect by measuring the spectral centroid of each
feature and comparing the centroid difference for feature pairs
with high and low cue values (Fig. 6 B, Center and Right). Spectral
differences are known to influence the grouping of sounds across
time (7, 35, 36), but this result suggests that they also should
affect the grouping of concurrent sound energy (the temporal
extent of the tensor was ±80 ms from the center of the reference
feature, and the width of feature kernels was 162 ms such that all
feature pairs considered in this analysis overlapped in time to a
fair extent).

The second template (Fig. 6C) appears to compute a tem-
poral derivative—features that have similar projections tend
to be aligned in time (Fig. 6 C, column 2), recapitulating
the established grouping cue of common onset/offset (20–24).
This template also detects misalignments in fundamental fre-
quency (Fig. 6 C, column 3), another established grouping
cue (16–19, 37, 38).

The modulation plane templates (Fig. 6 D and E) compute
differences between the power in different regions of the mod-
ulation plane and thus capture the tendency of features with
different spectral shapes (tone vs. clicks, for example) to belong
to distinct sources, regardless of their temporal configuration. To
our knowledge, this type of cue has not been previously noted in
the auditory scene analysis literature, although modulation rate
has been shown to affect the grouping of sequences of sound
elements (39).

Perceptual Test of Learned Grouping Cues. The derived cues
embodied in the templates varied in their statistical cue strength,

Młynarski and McDermott PNAS | December 10, 2019 | vol. 116 | no. 50 | 25359

D
ow

nl
oa

de
d 

at
 M

IT
 L

IB
R

AR
IE

S 
on

 D
ec

em
be

r 1
7,

 2
01

9 



A

B

C

D

E

Fig. 6. Learning grouping cues from natural signal statistics. (A) Schematic of discriminative model from which cues were learned. Cues are computed for
pairs of features by projecting each feature onto a cue template and taking the absolute value of the difference. The discriminative model takes the sum of
these absolute differences for a set of cue templates and predicts whether the feature pair co-occurs or not using logistic regression. The templates could
be defined in either the time–frequency or modulation planes. (B–E) Characterization of the 4 learned cues. (Left) Cue templates. (B, Center and C, columns
2 and 3) Distribution of stimulus properties hypothesized to be captured by template. (Right) Example feature pairs with high and low cue values. The cue
in C appears to capture 2 conceptually distinct sound properties (temporal offset and fundamental frequency difference) with a single template.

but all were individually predictive of whether feature pairs were
associated or not (Fig. 7A, using the analysis of Fig. 5B). To
test whether the derived cues affect perceptual grouping, we
used each individual template to construct experimental stim-
uli and measured whether listeners’ ability to use the cue in
a grouping judgment varied in accordance with its statistical
strength in the training corpus of natural sounds (experiment
5). For each cue, we searched for pairs of features with high
values of that cue but low values of the other 3 cues such
that the cue of interest would provide the only indication that
the 2 features were not part of the same source (Fig. 7 B,
Left). We then presented the pair successively with another
pair in which all 4 cues had low values and asked listeners to
judge which of the 2 pairs consisted of 2 sources. Listeners
were significantly above chance for each cue (Fig. 7 B, Right)
[t(14) � 4.17, P < 0.001 in all cases], suggesting that all cues
contribute to perceptual grouping judgments. Moreover, perfor-
mance varied with the statistical cue strength, providing addi-

tional evidence that perceptual grouping is based on internalized
co-occurrence statistics.

As a further test of the predictive value of the learned
cues, we used them to predict the perceptual grouping of 3
types of stimuli: pairs of the learned spectrotemporal kernels,
mixtures of artificial sounds synthesized from “blobs” in the
time–frequency plane, and mixtures of speech segments win-
dowed by time–frequency apertures. Apertures were used for the
speech conditions because mixtures of extended speech excerpts
almost never perceptually group to resemble a single source.
We searched for stimuli that the cue model confidently judged
to be single sources as well as stimuli that the model confi-
dently judged to be mixtures, and on each trial, we presented
listeners with one stimulus from each group, asking them to
identify the single source (experiment 6). In all 3 cases, lis-
teners’ judgments agreed with those of the model [being well
above chance for each condition; t(14) � 5.82, P < 0.001 in all
cases]. These results provide further evidence for the perceptual
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Fig. 7. Perceptual sensitivity to learned grouping cues. (A) Cue strength
of the learned cues measured as the Bhattarcharya distance between the
cue distributions for co-occurring and non–co-occurring feature pairs. Error
bars plot standard deviation of the bootstrap distribution (obtained by
resampling from the sets of feature pairs). (B) Description and results
of experiment 5, which measured perceptual sensitivity to each of the 4
learned cues. The task was the same as in experiments 1 to 3: listeners heard
2 feature pairs and judged which one consisted of 2 sources. One feature
pair on a trial had a low cue value (implying high association strength), and
one had a high cue value (implying low association strength). Here and in C,
error bars denote SEM, and asterisks denote statistical significance of t tests
vs. chance, ***P < 0.001. (C) Description and results of experiment 6, which
measured human agreement with model decisions about the segregation
of mixtures of 3 types of stimuli (the spectrotemporal kernels learned from
speech and instruments, artificial time–frequency (T.-F.) blobs, and speech
excerpts windowed in the time–frequency plane). On each trial, listeners
heard 2 mixtures and judged which consisted of 2 sources.

reality of the derived cues and show that they have fairly general
predictive power.

Grouping of Feature Sequences. Experiments 1 to 6 demonstrate
the perceptual relevance of empirical co-occurrence statistics
and of the cues that we derived from them but utilized pairs
of features or sound excerpts in close temporal proximity.
To test whether the measured co-occurrence statistics would
be predictive of the perceptual grouping of more extended
sound sequences, we used the co-occurrence tensor to gener-
ate sequences of features spaced more widely in time. Each
sequence was seeded with an initial feature. Subsequent fea-
tures were chosen from a probability distribution derived from
their association strength with the previous feature, with fea-
tures with higher association strength having higher probability
(Fig. 8A). We then measured whether the co-occurrence statis-
tics could predict the perceptual “streaming” of these sequences.
For each of a set of reference sequences, we generated 2 types
of mixtures: one with a second sequence with features that
had high association strength with the features of the refer-
ence sequence and one with features that did not (Materials
and Methods and Fig. 8B). Listeners were presented with a mix-
ture and judged whether it was generated by 1 or 2 sources
(experiment 7).

As shown in Fig. 8C, listeners reliably judged the mixture
with the non–co-occurring sequence as 2 sources but showed
the opposite tendency for the mixtures with the co-occurring
sequence [t(10) = 9.56, P < 0.001, t test]. Subjectively, the
sequences in a non–co-occurring mixture typically differed in
their acoustic qualities, and attention could often be directed

to one or the other. There was thus some similarity to classical
examples of streaming with alternating tones and other simple
sound elements (35, 36), even though the sound sequences here
were more stochastic and varied. The results indicate that pair-
wise co-occurrence statistics capture some of the principles that
cause extended sound sequences to perceptually stream.

Discussion
We introduced a framework for measuring natural signal statis-
tics that could underlie perceptual grouping and explored their
relationship to perception in the domain of audition. We
first learned local acoustic features from natural audio signals
(speech and instrument recordings) (Fig. 2) and computed their
strength of co-occurrence (Fig. 3). Our results revealed that
acoustic features exhibit rich pairwise dependencies, but that
these co-occurrences could be summarized to a fair extent with
a modest number of “cues.” We formalized the notion of a cue
as a stimulus property that predicts the co-occurrence of pairs
of features (Fig. 5) and derived cues from the large set of mea-
sured pairwise co-occurrence statistics (Fig. 6). The cues that
emerged include some previously known to influence grouping
(such as common onset and fundamental frequency) as well as
others that have not previously been widely acknowledged (such
as separation in acoustic and modulation frequency for concur-
rent features). We found evidence that the auditory system has
internalized these statistics and uses them to group features into
coherent objects. This was true both for isolated pairs of fea-
tures (experiments 1 to 4 and 6) and for more extended feature
“streams” (experiment 7) as well as for each of the individ-
ual cues revealed by the co-occurrence statistics (experiment 5).
These results provide a quantitative link between auditory per-
ceptual grouping and natural sound statistics, show how these
statistics may be harnessed to study auditory scene analysis, and
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Fig. 8. Streaming of spectrotemporal feature sequences. (A) Sequence gen-
eration from co-occurrence statistics. First, a seed feature is chosen. Second,
the column of its association strength matrix is extracted for the desired
time offset for the next feature (here fixed at 75 ms). Third, the column is
transformed to a probability distribution via the softmax function. Fourth,
the next feature is drawn from this distribution. These steps are iterated
until a sequence of the desired length is obtained. (B) Example refer-
ence sequence (Top) mixed with a co-occurring sequence (Middle) and a
non–co-occurring sequence (Bottom). (C) Description and results of exper-
iment 7. On each trial, listeners heard a mixture of 2 feature sequences
and judged whether it was produced by 1 or 2 sources. Error bars denote
SEM. Asterisks denote statistical significance of a paired t test between
conditions (***P < 0.001).
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offer a general framework for relating natural signal properties
to perceptual grouping.

Related Work. The derivation of ideal observer models has a long
and productive history in perception research (40), and such
models have been used to learn cues for a range of natural tasks
(41, 42). Previous such attempts to relate perceptual grouping
to natural scene statistics have largely been limited to con-
tour grouping in images (8–12). These influential earlier efforts
inspired our work here but were reliant on hand-picked features
labeled by human observers (object edges), and their analysis was
limited to dimensions thought to be important a priori (position
and orientation). Our results demonstrate how one can derive
grouping cues from features learned entirely from natural sig-
nals without prior hypotheses about the features or underlying
grouping principles. Learning signal features and grouping cues
from the structure of natural sounds paid dividends by reveal-
ing statistical effects that were not obvious beforehand and that
were found to have corresponding perceptual grouping effects.
Our methodology also gives additional support to commonly dis-
cussed cues by showing that they emerge from the large set of
possible cues that might in principle have been derived from
natural sound statistics.

Our results complement a long research tradition that has doc-
umented behavioral and neural effects of a handful of acoustic
grouping cues, relying on intuitively plausible cues and synthetic
stimuli (7, 16–22, 37, 43). We provide statistical justification for
the 2 most commonly studied cues from this literature (onset
and harmonicity) but also identify other statistical effects and
show their perceptual relevance. Frequency separation is known
to strongly affect the grouping of stimuli over time (35, 36) but
is less acknowledged to influence the grouping of concurrent
features. Our results show that it is the strongest effect evi-
dent in local co-occurrence statistics of natural audio, at least
for the corpora that we analyzed, and that it has a correspond-
ingly strong perceptual effect. Modulation differences have also
not been widely appreciated as an influence on the grouping of
concurrent features (39) but emerged from the analysis of co-
occurrence statistics and also proved to have a large perceptual
effect. The analysis of natural signal statistics is thus “postdic-
tive,” suggesting normative explanations for known effects, but
can also be predictive, pointing us to phenomena that we should
test experimentally.

Our quantitative approach to grouping has the added ben-
efit of taking us beyond verbal descriptions of phenomena to
enable grouping predictions for arbitrary stimuli. We leveraged
this ability to make such predictions for 3 different types of stim-
uli (experiment 5). The verbal characterizations of cues from
classical approaches cannot be tested in this way.

Our approach also complements engineering efforts to
solve auditory grouping. Early attempts in this domain were
inspired by psychoacoustic observations and implemented hand-
engineered grouping constraints based on common onset and
periodicity (44–46). More recent attempts to build computa-
tional models of sound segregation similarly focus on the intu-
itively plausible cue of temporal coincidence (23, 24). Current
state-of-the-art engineering methods instead rely on learning
how to group acoustic energy from labeled sound mixtures (47,
48) but are at present difficult to probe for insight into the under-
lying acoustic dependencies. Our methodology falls between
these 2 traditions, using the rich set of constraints imposed by
natural signals but providing interpretable insight into factors
that might underlie grouping. Indeed, our choices to restrict the
analysis to pairwise dependencies and to learn linear cues that
summarize the measured dependencies were made to facilitate
inspection of the results.

The choices that we made to enable interpretability come
at the expense of predictive power: the cues do not perfectly

predict the empirical statistical association between features, and
they do not perfectly predict human judgments. This no doubt
reflects in part the complexity of the source separation prob-
lem, the optimal solution of which seems likely to require more
than pairwise feature associations and linear cue templates. In
this respect, the problem that we are modeling may be distinct
from other more limited perceptual tasks that have been suc-
cessfully modeled using simple cue features (41, 42, 49, 50).
We suspect that models that make accurate quantitative predic-
tions about human source separation will need to be substantially
more complicated than the discriminative model that we used
here. However, this complexity may come at the cost of inter-
pretability (51) as in contemporary source separation methods
(47, 48). Grouping cues as traditionally conceived (and as derived
here) may be limited to coarsely approximating the mechanisms
underlying real-world perceptual organization, providing insight
and the ability to make qualitative predictions but falling short of
a full explanation of human abilities.

Open Issues and Future Directions. Our approach leveraged avail-
able recordings of single sound sources. Single-source recordings
provide a weak form of supervision in that the resulting feature
activations can be assumed to belong together without requir-
ing the use of human labels that were critical to previous work
in this vein (8–12). However, because large numbers of single-
source recordings are presently available only for speech and
musical instruments, our analysis was limited to these sound gen-
res. Humans encounter many other types of sounds, and our
results may thus not reflect the full set of dependencies that
influence perception. However, speech and instruments instan-
tiate many of the types of physical processes that can generate
sound in the world (52): impact sounds, sound produced by blow-
ing air in various ways, periodic and aperiodic source energy
filtered by resonant bodies, etc. It thus seems plausible that
the dependencies learned from the combination of speech and
instruments could approximate many of the statistical proper-
ties that matter for auditory grouping. However, the results
would no doubt be quantitatively different if it were possible to
include other types of sound (53), and an expanded corpus might
yield association strengths that are more strongly predictive
of perception.

The use of large corpora of recorded audio had the additional
consequence that our analysis was restricted to monaural audio.
Natural auditory input likely contains important binaural depen-
dencies that contribute to grouping (54–58) that our approach
could in principle capture if applied to audio recorded from 2
ears (59). Another limitation of our approach lies in the use
of sparse feature decodings, which efficiently describe speech
and music sounds but are a poor description of more noise-like
sounds, such as textures (33). Textures are an important part of
auditory scene analysis (60), and studying the statistical basis of
their grouping will likely require an alternative encoding scheme,
potentially based on summary statistics (61) rather than localized
time–frequency features.

Our results suggest that human listeners have internalized the
co-occurrence statistics that we measured: Listeners reliably dis-
criminate between feature pairs with high and low association
strength (Fig. 4). The results leave open whether knowledge of
the dependencies is built into the auditory system over evolu-
tion, whether it is learned during development, and/or whether it
continues to be updated during adulthood. If evolved, grouping
principles could potentially even predate the origins of speech
and music, in which case the match between perception and
our corpus statistics might reflect the adaptation of speech and
music to the auditory system (which, by hypothesis, would then
be shaped primarily by other classes of natural sounds) rather
than the other way around (62). However, some types of sound
source structure can be learned relatively quickly (63, 64) and can
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aid source separation (65), raising the possibility that the local
feature dependencies studied here could be learned over devel-
opment, plausibly from speech and music sounds among others.
This could in principle be addressed by exposing listeners to
sounds with altered statistical dependencies and then measuring
whether perceptual grouping is altered.

A full account of auditory scene analysis will undoubtedly
require more complete statistical models of natural sound
sources, incorporating more than the pairwise dependencies
between local features studied here (26). In addition to multi-
element dependencies, a full model will likely require additional
hierarchical structure, in which groups of local features are in
turn grouped into larger-scale configurations. Such hierarchical
organization could be one way to model the grouping effects of
repetition (66, 67), which is one powerful grouping phenomenon
not accounted for by our analysis.

The instantiation of perceptual grouping in the brain remains
a key open issue in systems neuroscience, particularly in audi-
tion (23, 68–70). The features that we measured could plau-
sibly be detected by neurons in the auditory system (28), and
the co-occurrence statistics that we analyzed could in princi-
ple be encoded by connections between neurons, analogous to
the association fields for contour grouping that are thought to
be instantiated in lateral connections between visual neurons
(71). Alternatively, co-occurrence statistics could be encoded by
higher-level sensory neurons implementing logical and/or-like

computations (72–74). The latter possibility could be tested by
comparing the components of such multidimensional receptive
fields with the cue templates that we derived.

Although our methodology starts from an encoding scheme
based on local features, in part because these are most read-
ily mapped onto early stages of sensory systems (62, 75, 76),
problems of scene analysis can also be approached with gener-
ative models more rooted in how sounds are produced (77). For
instance, speech and instrument sounds are fruitfully character-
ized as the product of a source and a filter that each vary over
time in particular ways (78, 79), as are sounds in reverberant
environments (80), and humans seem to have implicit knowledge
of this generative structure (81). Reconciling these generative
models for sound with those rooted in neurally plausible local
feature decompositions is a critical topic for future research.

Materials and Methods
Methods are described in full detail in SI Appendix, SI Materials and

Methods.
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Supporting Information Text

Materials and Methods

Natural sound corpus. We created a corpus of sounds generated by individual physical sources by merging corpora of recordings
of individual talkers and musical instruments in equal proportion. Speech sounds were taken from the TIMIT database (1),
and included voices of male and female speakers speaking sentences in English. Solo instrument sounds were taken from the
RWC Music Database (2). The database consists of individual notes played by a diverse set of instruments including pianos,
guitars, brass, woodwinds and drums. We uniformly sampled random excerpts of sound from all recordings in the database.
The final dataset consisted of 7000 excerpts (3500 excerpts of speech and 3500 excerpts of instruments), each 3 seconds long,
resulting in approximately 5 hours and 48 minutes of sound. The sampling rate was set to 16 kHz.

Cochleagrams. All analyses used a cochleagram representation of sounds intended to approximately simulate the output of the
auditory nerve. Cochleagrams were generated as in previous publications (3, 4). Raw sound waveforms were passed through a
bank of 81 bandpass filters, regularly spaced on an equivalent rectangular bandwidth (ERBN ) scale with bandwidths matched
to those expected in the healthy human ear (5). Center frequencies spanned 31 Hz - 7656 Hz. Filters were zero-phase, with
transfer functions shaped as the positive portion of a cosine function (chosen to facilitate inversion, for stimulus generation).
Filtering was performed by multiplication in the frequency domain, yielding a set of subbands. The cochleagram was generated
from the Hilbert envelopes of the subbands, transformed with a power function (with the exponent 0.3, roughly approximating
properties of basilar membrane compression (6)). The result was downsampled to 400 Hz. Code to generate cochleagrams is
available on the senior author’s lab webpage (http://mcdermottlab.mit.edu).

The cochleagram does not explicitly represent phase information from the subbands, but because adjacent filters overlap,
the phase is implicitly constrained by the set of subband envelopes, such that a sound can be synthesized from the cochleagram
that resembles the original to a reasonable extent. Cochleagrams are commonly used as front-end representations for auditory
modeling because they can be straightforwardly downsampled (because the envelope of a subband is lowpass). The lower
sampling rate facilitates the learning of features covering moderate time scales, which would be prohibitively large at audio
sampling rates.

Learning the feature dictionary. To learn an acoustic feature basis for cochleagrams we used a convolutional sparse-coding
model described in (7) with an additional non-negativity constraint imposed on the basis functions, to aid interpretability in
terms of sound energy (which is non-negative) and produce localized features (8). The model represents a cochleagram excerpt
as a sum of spectrotemporal kernels (STKs) „ (162 ms in duration) convolved with their activation time courses s:

x̂t,f =
Ë ÿ

i

„i,f ~ si

È

t
[1]

The model finds feature activations for individual cochleagram excerpts by minimizing the following cost function:

L(x, „, s) =
ÿ

t,f

1
x̂t,f ≠ xt,f

22
+ ⁄

ÿ

i,t

|si,t| [2]

where ⁄ is a parameter controlling the degree of sparsity. The sparsity term in equation 2 implicitly assumes that feature
activations follow an exponential distribution.

A feature dictionary was learned from the speech/instrument corpus described above with the following standard iterative
two-step learning procedure. All spectrotemporal kernels were first initialized with Gaussian noise. During each learning epoch
a random cochleagram excerpt (320 ms in length, i.e. 129 samples) was drawn from the dataset. In the first step, optimal
coe�cients were inferred for the cochleagram excerpt by minimizing equation 2 with respect to sparse coe�cients s. In the
second step, the inferred coe�cients were used to perform a gradient step on the basis functions „. The two steps were iterated
(each time with a di�erent randomly drawn cochleagram excerpt) for 100, 000 epochs. The value of the sparsity controlling
parameter ⁄ was set to 0.2.

Because the inference of all coe�cients s is computationally demanding, we relied on an approximate inference scheme (9).
Instead of inferring the values of all coe�cients for each excerpt, we selected a subset of them to be optimized. This subset
consisted of the 1024 coe�cients si,t whose associated kernels „i generated the strongest projections on the cochleagram (i.e.
best matched the structure of the signal). During the inference process, only the values of these coe�cients were optimized,
while the others were set to 0. The gradients of the basis functions were then computed using the coe�cients from this
approximate inference step.

We set the number of learned kernels to 80. We found empirically that if this number was larger, some of the kernels would
not converge during training. Because di�erent random initializations yield slightly di�erent sets of feature kernels, we trained
10 di�erent sets of kernels, and then combined them for subsequent analyses as described below. The analyses were thus based
on a total of 800 learned kernels.

Reconstruction fidelity. We quantified the fidelity of the feature reconstructions with an SNR measure. We first encoded the
entire sound corpus (speech and instruments) with four di�erent feature dictionaries of equal size (80 features):

1. Learned - a dictionary learned from sound statistics as described above.
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2. Time-frequency “blobs” - a dictionary of spectrotemporally localized random features. Each feature was generated in the
same way as the spectrotemporal blob stimuli in Experiment 6.

3. Tones - a dictionary of cochleagrams of pure tones. Tone frequencies linearly interpolated between 31 and 7656 Hz.

4. Time-frequency noise - a dictionary of Gaussian white noise patterns in the cochleagram domain.

For each dictionary, the SNR was computed as the ratio of the power of the original cochleagram of each sound excerpt in
the training corpus and the residual from its encoding. Fig. 2C displays averages and standard deviations of SNR values for
each dictionary.

Co-occurrence statistics. Association strength matrices were computed by first averaging a feature’s coe�cients conditioned
on another feature exceeding an activation threshold. Using the learned features „, we first inferred optimal coe�cients si,t for
each of the 7000 3-second-long sound excerpts in the sound corpus. In that way we obtained 7000 3-second-long (1200 samples)
coe�cient maps. The rows of the coe�cient maps correspond to individual kernels „i and the columns to time points t. From
each coe�cient map generated in this way we then sampled 50 random, 160-ms-long (65 samples) excerpts. This resulted in a
dataset of 350,000 excerpts of coe�cient maps.

For each kernel of interest „i we selected the coe�cient map excerpts for which the activation coe�cient si at the excerpt’s
center (i.e. t=33) exceeded an activation threshold ·i. The activation threshold ·i was set to be equal to the 95th percentile of
the distribution of coe�cients si,t, estimated using the entire dataset. The coe�cient map excerpts selected in this way were
averaged to obtain the conditional activation matrix S. We note that one justification for using the mean conditional activation
as a measure of dependence is that the features were learned assuming an exponential prior on the coe�cients, whose scale
parameter is fully captured by the empirical average.

Marginal kernel activations were computed by averaging the corpus encodings across time and excerpts, resulting in a vector
v, with individual entries vi corresponding to average activations of each kernel „i. This vector was then concatenated 65 times
to create a marginal activation matrix M (since the marginal activation by definition does not depend on time).

Association strength matrices for each kernel „i were then computed by taking the logarithm of the element-wise ratio of
the corresponding conditional activation map S and the marginal activation map M . This procedure was followed for each of
the 10 feature dictionaries, yielding 10 di�erent tensors.

One interpretation of this ratio is that it compares the expected co-activation of a feature with another when they are
generated by the same source vs. when they are generated by di�erent sources. This interpretation assumes that di�erent
sources are independent, such that the distribution of a feature conditioned on another being active is just that feature’s
marginal distribution. Another interpretation is that the ratio serves to normalize the conditional activation of a feature by its
mean activation, so that the quantity can be compared across features that have di�erent average activations.

Computing cues.

Onset/offset detection. The onset of each STK was computed from the mean across frequency channels of the subband temporal
envelopes composing its cochleagram. Onset time was defined as the first time point (measured from the beginning of the
kernel) at which the envelope exceeded 5% of its maximal value. Analogously, o�set time was defined as the time point where
the envelope dropped below the 5% threshold of the maximal value for the last time.

F0 extraction with YIN. Periodicity and fundamental frequency (F0) of each kernel were computed using the YIN pitch tracking
algorithm (10) applied to a waveform representation of the kernel (see below for details of cochleagram-to-waveform inversion
method). We analyzed F0 di�erences only among kernels with an aperiodicity index below 0.2.

Stimulus generation - cochleagram inversion. Stimulus waveforms were generated from cochleagrams via an iterative inversion
procedure. The waveform was initialized with white noise. Each iteration consisted of the following steps:

1. Generate subband decomposition of waveform using cochlear filterbank.

2. Divide out Hilbert envelopes of each waveform subbands and multiply by the corresponding cochleagram envelope.

3. Refilter the modified subbands and sum to yield a new waveform.

These steps were repeated 20 times. Iteration was necessary because step 3 altered the subband envelopes, partially undoing
the e�ect of step 2. Over time the resulting waveform converged to a state in which the subband envelopes were close to the
desired values.

Learning grouping cues through discriminative model training. The purpose of the discriminative model was to learn acoustic
properties that were predictive of the co-occurrence of STK pairs in the training corpus. We quantified acoustic properties
with linear templates in the time-frequency and modulation planes (the two most common domains in which to analyze sound).
The discriminative model learned templates in the two domains (◊S

i and ◊M
j respectively) whose dot-product with an STK was

similar for frequently co-occurring STKs, but di�erent for non-co-occurring STKs. A grouping cue was thus operationalized as
the absolute value of the di�erence in template projections between two sounds in one of the two domains:
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cuei(x1, x2) =
---◊T

i x1 ≠ ◊T
i x2

--- [3]

where T denotes the transposition operator. Although the model was trained using STKs, it could be applied to an arbitrary
pair of sounds, which we denote x1, x2.

Each pair of kernels was represented in the spectrotemporal and modulation domains (xS
1 , xS

2 and xM
1 , xM

2 respectively),
from which the following sum across all cues was computed:

S(x1, x2) =
Nÿ

i

---(◊S
i )T xS

1 ≠ (◊S
i )T xS

2

--- +
Kÿ

j

---(◊M
j )T xM

1 ≠ (◊M
j )T xM

2

--- [4]

where each term in each of the sums is the value of a cue (corresponding to a particular template). The probability of the
two sounds being non-co-occurring in the training set was then computed by applying a logistic nonlinearity to S(x1, x2):

p(C = 1|S(x1, x2)) = 1
(1 + exp(≠(S(x1, x2) + —))) [5]

where C œ 0, 1 is a class label denoting whether the two sounds co-occur (C = 0) or do not co-occur (C = 1) in the training
set.

Cues were learned in a greedy fashion. First, the total desired number of cues was chosen (here, N + K = 4, chosen because
this number was found empirically to produce good discrimination performance, but was not so large as to preclude inspection
of individual cues). Adding additional cues only marginally improved discrimination performance (4 cues yielded 81% correct,
12 cues gave 82%, and 16 cues gave 83.5%). The sub-ceiling asymptotic performance presumably reflects limitations of linear
cues, which we adopted to facilitate inspection rather than maximize discriminative performance. Nonlinear operations are
likely needed to fully capture some quantities that are important for grouping, and to maximize discrimination. Nonlinear cues
could in principle be explored using a similar framework, but would likely be more challenging to interpret.

During each iteration a new cue template was learned in the time-frequency domain, and another one in the modulation
domain. These cue templates were learned by maximizing the log-likelihood of the data via gradient descent. In the next step,
the cue template (either time-frequency- or modulation-based) that increased the data log-likelihood by the largest amount
was retained and incorporated into the cue basis. The other cue was discarded. These steps were iterated until the total
desired number of cues was learned. Cue templates within each domain were constrained to be mutually orthogonal, in order
to di�erentiate the cues. Because the cues were learned sequentially (“deflationary learning" (11)), only the second cue in each
domain was a�ected by the orthogonality constraint. Moreover, because the templates were high-dimensional (F xT = 5525
dimensions), orthgonality imposed a relatively weak constraint (the second cue was constrained to be orthogonal to only one
direction in the 5525 dimensional cue space).

To create the training dataset, we combined co-occurring and non-co-occurring STK pairs corresponding to positive and
negative entries within the co-occurrence tensor respectively. From individual co-occurrence matrices corresponding to each
STK, we selected STK pairs corresponding to the highest positive 512 entries and the lowest negative 512 entries. Since
each matrix consists of 5200 entries, this approximately corresponded to the upper and lower 10% of entries within each
co-occurrence matrix. To facilitate learning, templates were learned in a lower dimensional subspace. The dimensionality of the
time-frequency feature representations was reduced with principle components analysis to 32 dimensions. These 32 dimensions
accounted for 72% of the variance across features. The dimensionality of features in the modulation domain was reduced to
16 dimensions, accounting for 99% of variance. We experimented with di�erent numbers of principle components and these
settings produced the best convergence out of those that we tried. Once learned, the templates were projected back to the
stimulus space for display purposes.

Perceptual experiments. All experiments were approved by the Committee on the Use of Humans as Experimental Subjects at
the Massachusetts Institute of Technology, and were conducted with the informed consent of the participants.

General setting. With the exception of Experiment 7 (streaming of STK sequences), each experiment followed the same 2-AFC
design. During each trial participants heard two sounds (0.16 seconds in duration each) separated by a 0.5 second silence
period. Participants were asked to judge "Which of the two sounds consisted of two di�erent sources", and indicated their
choice using the keyboard. Participants were allowed to listen to the two stimuli as many times as they wished on each trial.
All stimuli were presented at 70 dB SPL over Sennheiser HD 280 Pro headphones, played out via a Mac Mini computer. A 20
ms Hanning window was applied to the beginning and the end of each sound to prevent onset/o�set transients.

Experiment 1 - Sensitivity to STK co-occurrence statistics. For each STK in each of the learned feature dictionaries we created
co-occurring mixtures and non-co-occurring mixtures by pairing it with other STKs. Because the distribution of the association
strength was both asymmetric about zero and variable in shape and extent across STKs, we used two criteria to select the
STK pairings. First, the pair had to have an association strength in the top 1% of all positive association strength values
(for the co-occurring mixtures) or in the bottom 5% of all negative association strength values (for the non-co-occurring
mixtures). Second, each STK could contribute at most 9 mixtures of each type. These mixtures were chosen to be those that
had maximal (for co-occurring mixtures) or minimal (for non-co-occurring mixtures) association strength values subject to the
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first constraint. Additionally, the mixtures were constrained to lie in the central temporal region of the co-activation matrix of
that STK (specifically, the entries within 25 ms of the center; see Experiment 7 for stimuli with more widely spaced features).
In that way we could obtain at most 9 ◊ 80 ◊ 10 = 7200 co-occurring STK mixtures and 7200 non-co-occurring mixtures. The
combination of the selection constraints with the empirical distributions of association strengths resulted in 7156 co-occurring
STK mixtures and 2775 non-co-occurring mixtures. Each mixture was defined by the two STKs and a time o�set. To generate
the experimental stimuli, the STKs were superimposed with the designated time o�set.

On each trial one mixture (superposition) of co-occurring STKs and one of non-co-occurring STKs were selected at random.
A response was considered correct if a participant selected the interval containing the non-co-occurring STKs. Participants
completed a block of 100 trials with STK mixtures derived from natural sounds statistics (condition 1).

In a separate block (condition 2), we tested participants’ ability to discriminate individual natural sound sources from
mixtures thereof. Using the sounds used to learn the STKs, we generated 100 random excerpts of individual sources (speakers
and instruments) and 100 mixtures of two random excerpts (speakers and/or instruments). Each excerpt had a duration equal
to that of an individual STK. Participants completed 100 trials with these natural stimuli. Performance on the odd-numbered
trials was used to select participants (to eliminate participants who might have misunderstood the task, or who might not have
been motivated, as described below in the Participants section), and was then discarded. Only the even-numbered trials were
used for the analyses in the paper, to avoid errors of non-independence.

Experiment 2 - Sensitivity to co-occurrence statistics of artificial sounds (control experiment). The experiment was identical to Experi-
ment 1 except that a condition with stimuli derived from co-occurrence statistics of a corpus of artificial sounds was substituted
for the speech/instrument condition. Artificial sound textures were synthesized to match a set of statistics measured in speech.
Specifically, we used the synthesis algorithm of McDermott and Simoncelli (4), imposing the marginal statistics (mean and
variance) of cochlear filter envelopes and the power in each of a set of modulation filters applied to the cochlear envelopes. These
statistics were chosen to create stimuli with naturalistic spectra and modulation content (so that they would be well described
by the feature set learned from natural sounds) but to otherwise lack the statistical dependencies present in natural sounds.
Statistics were measured and imposed using an auditory model identical to that described in the original publication (4) except
that the cochlear filterbank parameters were changed to those used to generate the cochleagrams from which co-occurrence
statistics were measured. We generated 600 excerpts of such textures, each 6 seconds long. Each excerpt had statistics matched
to a unique, random combination of 20 sentences from the TIMIT database. Each sound was split into two 3-second excerpts.
These excerpts were then encoded using the feature dictionaries learned from speech and instruments, and experimental stimuli
were derived using the same procedure as for condition 1 of Experiment 1. The other experimental condition was identical to
condition 1 of Experiment 1.

Experiment 3 - Sensitivity to parametrically varied coactivation strength. The experiment was identical to Experiment 1 except that
there were three conditions, di�erentiated by the magnitude of the di�erence in association strength between co-occurring and
non-co-occurring STK pairs. Co-occurring STK pairs were drawn from the following association strength intervals: [2, 10]
(condition 1), [1, 1.2] (condition 2), [0, 0.2] (condition 3). Non-co-occurring STK pairs were drawn from the intervals [-10, -2]
(condition 1), [-1.2, -1] (condition 2), and [-0.2, 0] (condition 3). These intervals were selected to approximately uniformly span
the range of values of the co-activation tensor entries. In a manner analogous to Experiment 1, for each of the three conditions
we generated up to 9 co-occurring mixtures and 9 non-co-occurring mixtures per STK, randomly sampled from the interval for
that condition.

During the experiment participants completed 70 trials for each condition (210 trials in total), randomly ordered.

Experiment 4 - Perception of individual mixtures. Stimuli were superpositions of STKs used in Experiment 3. Each of the STK
mixtures corresponded to one of 6 non-overlapping intervals of association strength, taken from one of the three conditions of
Experiment 3 (in which each condition contrasted two association strength intervals, yielding 6 intervals in total). Each subject
heard 30 STK mixtures randomly drawn from each of the 6 intervals, yielding 180 stimuli in total.

On each trial a participant heard a single STK mixture drawn from one of the six association strength intervals. Participants
judged whether they heard a single source, or a mixture of two sources. Participants could listen to the stimuli repeatedly if
they desired. They generally did so a few times at the start of the experiment. The 180 trials were randomly ordered, divided
into three blocks of 60 trials.

Experiment 5 - Sensitivity to individual learned cues. Stimuli were selected from an initial set of 50,000 STK mixtures consisting of
pairs of STKs randomly drawn from 10 learned dictionaries, at random time o�sets within the [0, 50] ms range. We computed
cue values for each STK mixture (the absolute value of the di�erence in the template dot-products with each STK in the
mixture), and for each of the cues, we computed two thresholds: the cue value at the 20th percentile of the cue values within
the initial set of 50,000 random STK pairs (the low threshold), and the cue value at the 80th percentile (the high threshold).

There was one experimental condition per cue, and each trial for a condition presented two STK pairs with either high or
low values of that cue. The low-value STK pairs were selected to yield cue values that were smaller than the respective low
thresholds for each cue. High-value STK pairs were selected to yield a cue value above the high threshold for the cue defining
the condition, while simultaneously having values of all other cues that fell below their respective low thresholds. On each trial
a participant heard one low-value and one high-value STK mixture in random order.

During the experiment participants completed 80 trials per condition (320 trials in total). The trials occurred in random
order.
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Experiment 6 - Human agreement with discriminative model decisions. To identify stimulus mixtures classified by the discriminative
model as generated by either one or two sources, we first generated 50,000 random pairs of sounds (described for each stimulus
type below). We then used the discriminative model to compute the probability of each pair being generated by di�erent
sources. We selected the 200 pairs generating the highest probability value and the 200 pairs generating the lowest probability
value, and on each trial presented one of each in random order.

The experiment consisted of three blocks, randomly ordered. In each block participants completed 100 trials from each of
the following stimulus classes:

1. STK mixtures.
Each of the two sounds in the mixture was an STK (drawn from the 10 learned dictionaries).

2. Modulated noise (spectrotemporal blobs).
Each of the two sounds in the mixture was a sample of modulated noise generated using a Gaussian process over the
cochleagram. The covariance matrix of the Gaussian process was designed to generate stimuli that were localized and
smooth in the cochleagram domain (see below). Each stimulus was randomly drawn as a 40 x 40 pixel array, subsequently
embedded at a random position on the time-frequency plane of the cochleagram (which spanned a time range of [0, 160]
ms and a frequency range of [0.02, 8] kHz). Stimuli were thus 160 ms in duration.
The covariance function for each pair of cochleagram pixels c1, c2 had the following general form:
cov(c1, c2) = exp( ≠d(c1,c2)

(2‡2) ), where ‡ was set to 10.

The distance function d(c1, c2) had the following form:
d(c1, c2) =


a(c1,t ≠ c2,t)2 + b(c1,f ≠ c2,f )2), where a and b are parameters controlling the strength of covariance in the

time and frequency dimensions.
To generate a diverse set of stimuli spanning a wide range of spectral and temporal modulation, we used three settings of
a and b parameters:

(a) a = 1, b = 1 - these values generated oval-like spectrotemporal shapes
(b) a = 0.1, b = 1 - these values generated temporally elongated, frequency localized, harmonic-like shapes
(c) a = 1, b = 0.1 - these values generated frequency elongated, time-localized, click-like shapes

During stimulus generation, one of these parameter settings was selected randomly (with equal probability) to generate a
sound. We generated a total of 512 sounds which were randomly combined into 50000 pairs.

3. Mixtures of apertured speech.
Each of the two sounds in a mixture was generated as follows. We randomly drew 160-ms excerpts of speech from the
TIMIT corpus. Each sample was bandpass-filtered and time-windowed to isolate a local patch within the time-frequency
plane. We found that this produced stimuli that could in some cases be mistaken for a single source, unlike mixtures
of full speech excerpts, which human listeners almost never mistook for a single source. Filtering was performed with
a Butterworth filter whose bandwidth was randomly selected to be between 1 and 3 octaves. The lower cuto� of the
filter was a random point along the logarithmic frequency axis, constrained to no be higher than the Nyquist limit minus
the filter bandwidth. After filtering, the waveform of each excerpt was multiplied by a Gaussian window centered at a
random position along the excerpt (generated by Matlab function gausswin). The width of the window was controlled
by a width parameter proportional to the reciprocal of the standard deviation. The value of the width parameter was
randomly drawn from the [1.5, 4] interval with uniform probability.

Experiment 7 - Streaming of STK sequences. Stimulus generation
The stimuli on a trial consisted of a reference sequence paired with a second sequence generated to contain elements that would
have either high or low association strength with the elements of the reference sequence. The features within each sequence
were spaced further apart in time than those in Experiments 1-6 (75 ms compared to an upper limit of 25 ms in Experiments
1-6).

We generated the STK reference sequence probabilistically using the STK association strength tensor. To generate a
sequence, we first chose the first STK in the sequence (each STK was used as the starting STK the same number of times).
In the next step we selected a column of the coactivation strength matrix for the first STK corresponding to the desired
temporal spacing of the STK to-be-sampled. We used that column to select the next STK in the sequence. To make this choice
probabilistic, we transformed this column of coactivation strength values using the softmax transform:

p(i) =
exp

!
Li,t+�t

"
q

j
exp

!
Lj,t+�t

" [6]

where Li,t denotes entries of the association strength tensor. The softmax transform generated a discrete probability
distribution over the STKs, in which STKs of highest positive association strengths were assigned highest probabilities,
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and STKs with negative association strengths were assigned lowest probabilities. An STK was sampled from the resulting
distribution. This step was iterated to obtain a sequence of the desired length.

The softmax transform is controlled by the "temperature" parameter —. If — = 0, the probability mass was equal to 0
for all STKs except for the most strongly associated STK, hence the choice was deterministic. For large — values (— æ Œ),
the distribution over STKs became uniform, and all STKs were equally likely regardless of their association strength. The
temperature parameter enabled us to generate sequences with varying degrees of randomness.

Sequences of STKs were therefore parametrized by three parameters: the total number of STKs, the temporal spacing of
consecutive STKs within a stream, and the temperature parameter controlling the degree of randomness of each stream. All
stimuli used here were 4 seconds long (containing 54 STKs). The temporal distance between STKs was set to 75 ms, and the
temperature parameter was set to 0.1.

For each reference sequence, we generated associated sequences which were either likely or unlikely to co-occur with the
reference sequence. We did this by selecting subsets of STKs of either high or low average association strength with the
reference sequence. We first computed a weighted average of all columns of the STK tensor used to generate a given sequence.
Each column was weighted by the number of occurrences of the corresponding STK in the reference sequence. The resulting
average vector had the largest positive values assigned to STKs which were strongly co-activated (on average) with STKs in the
stream. The smallest, negative values corresponded to STKs with smallest association strength. We used that average vector
to select the 20 most strongly coactivated STKs, or the 20 least strongly coactivated STKs. We then generated sequences in
the same way as the reference sequence, only using the selected STKs.

We generated stimuli using a single, randomly chosen STK dictionary. For each of the STKs in the dictionary, we generated
20 random reference sequences with that STK as the first sequence feature, using the procedure described above. For each
reference sequence we then generated a co-occurring sequence and a non-co-occurring sequence and added them to the
reference sequence, creating two mixtures. This resulted in initial sets of 20x80=1600 co-occurring sequence mixtures and 1600
non-co-occurring sequence mixtures.

To quantify the extent to which the STKs of a sequence should group with each other, we computed the average associ-
ation strength between consecutive STKs. We refer to this quantity as the "stream coherence". We found empirically that
non-co-occurring sequences had smaller average stream coherence than co-occurring sequences. To eliminate this di�erence we
selected only the STK sequence mixtures for which the associated co-occurring or non-co-occurring sequences had a stream
coherence falling within the interval [0.9, 1.1]. The final stimulus set consisted of 121 co-occurring sequence mixtures and 246
non-co-occurring sequence mixtures, whose associated sequences had approximately the same coherence on average (1.002 and
0.998, respectively). By contrast, the average stream coherence of the two types of mixtures di�ered, as intended (1.55 and
0.05 respectively).

Experimental procedure
The experiment consisted of 2 blocks of 50 trials. On each trial a participant heard a 4-second-long mixture of a reference
stream with either a co-occurring stream or a non-co-occurring stream. Participants judged whether they heard a single source
changing in time, or a mixture of two sources. Participants could listen to the stimuli repeatedly if they desired.

Participants. Experiments 1, 3, 5, and 6 used the same set of 15 participants (8 female, mean age = 25.5, SD = 11.4) who
performed the experiments in random order. To ensure task comprehension and motivation, these participants were selected
from a larger group of 26 as those who exceeded 90% correct on the speech and instrument condition of Experiment 1. So that
we could also measure their performance on this condition without bias from double-dipping, we selected participants using
their performance on the odd-numbered trials from this condition, and then analyzed and displayed the performance of the
selected participants for the even-numbered trials.

Experiment 2 used a separate set of 15 participants (4 female,mean age = 35, SD = 12.2). To ensure task comprehension
and motivation, these participants were selected from a larger group of 23 as those who exceeded an average performance level
of 55% correct across both conditions in the experiment (the inclusion criterion was neutral with respect to the hypothesis that
performance would be di�erent for natural and artificial co-occurrence statistics).

Experiment 4 used a separate set of 17 participants (11 female, mean age = 26.2, sd = 11.8).
Experiment 7 used a separate set of 11 participants (6 female, mean age = 36.8, SD = 18.5).

Sample sizes. A power analysis performed on pilot data indicated that 14 participants would be needed to reliably detect
above-chance performance at the anticipated levels (80% correct; 1 - — = 0.8, – = 0.05). As described above, in most experiments
we ran a larger number of participants and selected those that performed best on the speech/instrument mixture discrimination
condition of Experiment 1, yielding an N of 15. Sample sizes slightly varied across the other experiments (N=17 for Experiment
4, and N=11 for Experiment 7, which was somewhat easier than the other experiments).

Statistics. t tests were used to test for di�erences in performance between conditions or for di�erences from chance levels.
There was generally one or two such comparisons per experiment, so no correction for multiple comparisons was employed.
Repeated-measures ANOVAs were used to test for di�erences among multiple conditions in Experiments 3 and 4. For
Experiment 3, Mauchly’s test indicated that the sphericity assumption was violated, and so we report the Greenhouse-Geisser
correction. Data distributions were assumed to be normal and were evaluated as such by eye.
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