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Auditory Perception: Hearing high-level sensory stations are able to
the Texture of Sounds
A recent study provides intriguing insights into how we recognize the sound
of everyday objects from the statistical properties of the textures they
produce.
Figure 1. Example results from sound
synthesis.

Spectrograms of original sound textures (left),
and synthesized versions (right). Listeners
generally correctly identified the synthetic
sounds. From McDermott and Simoncelli [5].
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Sound and time are inextricably linked.
We are used to time freezing in other
sensory modalities: that geeky
mugshot of you as a teenager isn’t
ever going to change, while the smell
of frying onions, once wafted, lingers.
But sounds — the bleating of your
goat or the jabbering of your
spouse — usually start and stop
in quick succession.

With these examples in mind,
we tend to think of our hearing as
being geared towards processing
rapidly changing events. Indeed,
the temporal precision of the
auditory system far exceeds that of
other sensory modalities [1,2],
a property that allows sounds to
‘capture’ the perceived timing of
accompanying visual stimuli [3,4].
A new study by McDermott and
Simoncelli [5], however, challenges
this perspective of sounds as
exclusively transient events. They
step back and consider sounds on the
time scale of seconds, rather than
milliseconds, and describe a class of
sound ‘textures’ that do not change
with time on this scale, and which can
be recognized purely on the basis of
their statistics.

From Statistics to Sound Recognition
McDermott and Simoncelli [5] began by
constructing a simple model of the
auditory pathway. In this model, an
incoming signal is broken down into
separate frequency channels,
mimicking the filtering provided by the
cochlea. Next, the envelopes of energy
modulations within each channel are
extracted, and these envelopes are
then decomposed through an
additional modulation filterbank. The
authors then fed a number of real
sounds — from chirping insects to
falling rain— into themodel and looked
at the averages over time of the
model’s various outputs, such as how
much (and how sparsely) the cochlear
channels were activated, howmuch the
modulation channels were activated,
and how correlated each of these
channels were with each other.

The next step involved synthesizing
brand new sounds: the authors started
with white noise trains, and perturbed
them until their statistics according to
themodelmatched those of the original
sounds. Surprisingly, a large number of
the synthesized sounds were
indistinguishable to listeners from the
original sounds (Figure 1). But omitting
any one of the statistics from the model
often impaired the ability of subjects to
recognize them. For many auditory
textures, this fairly simple set of
statistics thus appears to capture the
same information that our auditory
system does.

Such sound textures are therefore
the static images of the auditory
system. They are perceptually stable:
despite variations in its short-term
acoustic structure, the sound of
a waterfall continues to sound like
a waterfall. The longer-term texture
statistics are all that seem to matter
for us to be able to make out
people applauding, a raging fire, or
a swarm of bees from the signals
reaching our ears.

Representing Sound Texture
in the Brain
These findings suggest that, for the
purposes of stimulus recognition,
the auditory system ‘abstracts
away’ the short-term, contingent
features of the sound texture that are
encoded in its low-level
representations. In doing so, it
produces a compact, high-level
representation of these sounds whose
content is some combination of the
statistics of lower-level activity. If this is
the case, then sound textures, perhaps
paradoxically, may offer a novel
opportunity for understanding how
information travels backwards through
the auditory pathway.

A powerful theoretical idea is that of
predictive coding: given that sensory
systems are organized in both
a hierarchical and recurrent fashion,
learn the statistical regularities present
in the activity of low-level stations, and
feed this information back to the lower
level at an appropriate time. This
could be used to ‘explain away’ the
pattern of low-level activities. Under
this hypothesis, the predictable pattern
of low-level activities could be
suppressed by top-down feedback.
Such a process has been described

as ‘analysis by synthesis’, whereby the
brain constructs high-level
hypotheses, based on low-level
processing, about the structure or
content of the scene. These
hypotheses are not just summaries:
they are generative models for how the
data came about. The models
manufacture synthetic data, which can
then be compared with the low-level
activity [6,7]. The residual activity that
remains is the unexplained data, and
therefore constitutes a prediction error
signal [8,9].
Evidence that the auditory cortex

might engage in predictive coding has
come from studies of the effects of
stimulus repetition on neural
responses. Thus, we know that
auditory cortical neurons are acutely
sensitive to the patterns in a sound
sequence, and respond more strongly
to rare events than to common
ones [10]. Even task-irrelevant
background sounds elicit different
electro-encephalogram (EEG) traces
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Figure 2. The classification of sound textures by their statistics may assist in auditory scene
analysis.

Sound from a complex scene enters the brain, and is represented by the activity of a
population of low-level neurons (triangles). The higher-level brain captures the statistics of
the low-level activity, hypothesizing that it consists of a stationary background sound texture,
whose statistics are collected, and a foreground non-stationary sound. The background could
then be subtracted to improve the perception of the foreground sound.
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depending on whether they are regular
or surprising [11].

It has been suggested that repetition
suppression whereby the neural
activity evoked by a sound is reduced
following repeated presentations of the
sound has a top-down origin, such that
cortical activity encodes prediction
error [12]. Recently, evidence
supporting this has come from
Todorovic and colleagues [13], who
showed that repetition suppression
depends on expectation. When human
subjects were presented with repeated
tones, the magneto-encephalogram
(MEG) activity measured from their
auditory cortex was reduced in
response to the second tone. In those
blocks where the repetition was
expected, however, the reduction in
activity was greater than when the
repeated sound was unexpected. The
predictive coding framework has also
been used to link the amount of
sensory noise in auditory cortex to
errors made in an auditory detection
task [14].

What does sound texture processing
have to do with this? There are several
pieces of evidence that suggest that
the ‘explaining away’ of predictive
coding might also be the basis for
‘ignoring’ unimportant sounds. First,
responses to unattended, neutral
sounds have been shown in many
experiments to be suppressed below
those to attended sounds, an effect
that is even stronger for actively
ignored stimuli [15]. Second, the kinds
of stimuli that we have difficulty
ignoring, which can be described as
having bottom-up saliency, are often
those that stand out as statistical
abnormalities from their spatially or
temporally local environment [16–18].
Finally, many of the sound textures that
were captured well by the model of
McDermott and Simoncelli [5] were
what we would class as background
sounds — insects chirping, rain falling,
air conditioners blowing, and so on.
These are, coincidentally, just the kinds
of sounds that we are good at ignoring.

This leads us to the tantalizing
hypothesis that, if our auditory system
can characterize a particular sound
texture by a small set of statistics, then
it may also be able to feed this back to
the lower level to cancel out the impact
the texture might otherwise have on
perception. This could be described as
‘catalysis by synthesis’, and is
potentially useful for auditory scene
analysis, the process by which the
sound elements belonging to
a particular object or event are grouped
together and segregated from those
belonging to other objects or events
[19] (Figure 2).

Thus, at that cocktail party that
seems to go on all night, the barman
has to drown out your colleagues’
endless, superimposed banter to hear
your request for something stronger. In
doing so, he must capture the statistics
of the complex background signal,
collapse it into a texture, and subtract
the resultant model’s predictions from
the ongoing babble. Barmen are pretty
good at that.
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