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Abstract
Contemporary speech enhancement predominantly relies on au-
dio transforms that are trained to reconstruct a clean speech
waveform. The development of high-performing neural net-
work sound recognition systems has raised the possibility of
using deep feature representations as ‘perceptual’ losses with
which to train denoising systems. We explored their utility
by first training deep neural networks to classify either spoken
words or environmental sounds from audio. We then trained
an audio transform to map noisy speech to an audio waveform
that minimized the difference in the deep feature representa-
tions between the output audio and the corresponding clean
audio. The resulting transforms removed noise substantially
better than baseline methods trained to reconstruct clean wave-
forms, and also outperformed previous methods using deep fea-
ture losses. However, a similar benefit was obtained simply by
using losses derived from the filter bank inputs to the deep net-
works. The results show that deep features can guide speech
enhancement, but suggest that they do not yet outperform sim-
ple alternatives that do not involve learned features.
Index Terms: speech enhancement, denoising, deep neural net-
works, cochlear model, perceptual metrics

1. Introduction
Recent advances in speech enhancement have been driven by
neural network models trained to reconstruct speech sample-by-
sample [1, 2, 3, 4, 5, 6, 7, 8]. These methods provide substantial
benefits over previous approaches, but nonetheless leave room
for improvement. The resulting processed speech usually con-
tains audible artifacts, and noise removal is usually incomplete
at lower SNRs.

A parallel line of work has explored the use of deep artificial
neural networks as models of sensory systems [9, 10]. Although
substantial discrepancies remain [11, 12], such trained neural
networks currently provide the best predictive models of brain
responses and behavior in both the visual and auditory systems
[9, 13]. The apparent similarities between deep supervised fea-
ture representations and representations in the brain raises the
possibility that such representations could be used as percep-
tual metrics. Such metrics have been successfully employed in
image processing [14], but are not widely used in audio appli-
cations.

Deep feature losses for denoising were previously proposed
in [15, 16, 17, 18, 19], but were explored only for relatively
high signal-to-noise ratios (SNRs), a single task and network,
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or were not compared to baseline methods using the same trans-
form architecture. Additionally, direct comparisons have not
been made to simpler losses derived from conventional filter
banks. It was thus unclear the extent to which deep feature
losses could improve on simpler approaches, and what choices
in the feature training would produce the best results. The goal
of this paper was to directly compare deep perceptual losses to
alternative losses, and to explore the conditions in which bene-
fits might be achieved. We found that deep feature losses pro-
duced more natural denoising compared to waveform losses, but
that a similar benefit could be achieved using a loss derived from
standard filter bank representations.

2. Methods

There were two components to our denoising approach (Figure
1). The first component was a recognition network trained to
recognize either speech or environmental sounds. Once trained,
this network was used to define deep feature losses. Speech
recognition is a natural choice in this context, but it also seemed
plausible that more general-purpose audio features learned for
environmental sound recognition might help to achieve natural-
sounding audio even in speech applications. The input to the
network was the output of a filter bank modeled on the human
cochlea.

The second component was a waveform-to-waveform au-
dio transform whose parameters were adjusted via gradient de-
scent to minimize a loss function (evaluated on features of the
recognition network, or the outputs of a filter bank, or on the
waveform). We used a Wave-U-Net [20], which has been found
to perform comparably to WaveNet [21] based on objective
metrics of noise reduction, but which can be specified with
many fewer parameters and run with a much lower memory
footprint. Code, models, and audio examples are available at:
http://mcdermottlab.mit.edu/denoising/demo.html.

2.1. Recognition Networks

The recognition networks took as input simulated cochlear rep-
resentations of 2s sound clips (audio sampled at 20 kHz). The
cochlear model consisted of a bank of 40 bandpass filters whose
frequency tuning mimics that of the human ear (evenly spaced
on an Equivalent Rectangular Bandwidth scale [22]), followed
by half-wave rectification, downsampling to 10 kHz, and 0.3
power compression [23].
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Figure 1: Schematic of audio transform training.

2.1.1. Recognition Network Architectures

We used three feed-forward CNN architectures for the recog-
nition networks. Each consisted of stages of convolution, rec-
tification, batch normalization, and weighted average pooling
with a hanning kernel to minimize aliasing [24, 12]. The three
architectures were selected based on word recognition task per-
formance from 3097 randomly-generated architectures varying
in number of convolutional layers (from 4 to 8), size and shape
of convolutional kernels, and extent of pooling. The selected
architectures had 6 (arch1) or 7 (arch2,3) convolutional layers.

2.1.2. Recognition Network Training

The recognition networks were trained to perform either word
recognition or environmental sound recognition. For the speech
task, each training example was a speech excerpt (from the Wall
Street Journal [25] or Spoken Wikipedia Corpora [26]). The
task was to recognize the word overlapping with the center of
the clip [13, 12] (out of 793 word classes sourced from 432
unique speakers, with 230,357 unique clips in the training set
and 40,651 segments in the validation set). For the environmen-
tal sound recognition task, each training example was a non-
speech YouTube soundtrack excerpt (from a subset of 718,625
AudioSet examples [27]), and the task was to predict the Au-
dioSet labels (spanning 516 categories in our dataset).

The three network architectures were trained on each task
until performance on the validation set task plateaued. Word
task classification accuracies for the three architectures were:
arch1 = 90.4%, arch2 = 88.5%, and arch3 = 80.6%. Au-
dioSet task AUC values were: arch1 = 0.845, arch2 = 0.861,
and arch3 = 0.869.

2.2. Audio Transforms

2.2.1. Wave-U-Net Architecture

The Wave-U-Net architecture was the same as in [21]: 12 layers
in the contracting path, a 1-layer bottleneck, and 12 layers in
the expanding path. All layers utilized 1D convolutions with
learned filters and LeakyReLU activation functions. There were
24 filters in the first layer, and the number of filters increased by
a factor of 2 with each successive layer prior to the bottleneck.

2.2.2. Deep Feature Losses

The recognition networks were used to define a deep feature
loss function as the L1 distance between network representa-
tions of noisy speech and clean speech. The total loss for a
single recognition network and single training example was the

sum of the L1 distances between the noisy speech and clean
speech activations for each convolutional layer, weighted to ap-
proximately balance the contribution of each layer.

2.2.3. Cochlear Model Losses

We also trained transforms using losses derived from the
cochlear model that provided input to the recognition network,
as well as variants of the model that varied in i) the number of
filters (5, 10, 20, 40, 80 and 160 filters, evenly spaced on an
ERB-scale [22], with bandwidths scaled to tile the spectrum in
all cases), ii) the dependence of filter bandwidth on frequency
(linearly-spaced and ‘reversed’, with broad low-frequency fil-
ters and narrow high-frequency filters, opposite to what is found
in the ear), and iii) in their phase invariance (subband envelopes
computed by lowpass-filtering the rectified subbands; cutoff of
100 Hz).

2.2.4. Wave-U-Net Training

Out of concern that the audio transform might overfit to idiosyn-
crasies of any individual recognition network, we trained some
transforms on losses computed simultaneously from an ensem-
ble of three different networks (arch1,2,3), and some on just a
single network (arch1).

In all cases the Wave-U-Net was trained on speech super-
imposed on non-speech AudioSet excerpts (the same corpora
used to train the recognition networks) with SNR drawn uni-
formly from [−20,+10] dB. AudioSet excerpts were used as
the training ‘noise’ as they were highly varied and diverse. All
Wave-U-Net models were trained with the ADAM optimizer for
600,000 steps (batch size=8, learning rate=10−4).

2.2.5. Baselines

We used two baseline models, both trained to explicitly recon-
struct clean speech waveforms from noisy speech waveforms
drawn from the same training set described above. The first
was a previously described WaveNet [5] and the second was the
Wave-U-Net [21] used with the deep feature and filter losses.

We also compared our results to those of a previously pub-
lished denoising transform trained with a deep feature loss [15],
using both the pre-trained model made available by Germain
et al. and a Wave-U-Net that we trained on our dataset using
the feature loss from [15] (deep network features trained on the
DCASE 2016 [28] environmental sound challenge).

2.3. Evaluation

We evaluated the trained models on 40 speech excerpts (from
a separate validation set) superimposed separately on each of
four types of noise signals: speech-shaped Gaussian noise, au-
ditory scenes from the DCASE 2013 dataset [29], instrumental
music from the Million Song Dataset [30], and 8-speaker bab-
ble made from public-domain audiobooks (librivox.org). These
noise sources were chosen to be distinct from those in the train-
ing set, and to span a variety of noise types to assess the gener-
ality of the trained transforms.

2.3.1. Human Perceptual Evaluation and Objective Metrics

We evaluated the audio transforms by conducting perceptual ex-
periments on Amazon Mechanical Turk. Participants first com-
pleted a screening task to help ensure that they were wearing
headphones or earphones [31]. The participants who passed this
screening task then rated the naturalness of a set of processed



Table 1: Experiment 1 results. Reported metrics are averaged
across the five tested SNR levels. Higher is better for all metrics.

Model name Loss function Natural. PESQ STOI SDR

Cochlear model
(N=40; human)

40 ERB-spaced
subbands 4.43 1.55 0.75 7.16

A123 AudioSet features
(arch123) 4.43 1.66 0.77 4.06

A1+W1 AudioSet + Word
features (arch1) 4.36 1.68 0.79 6.18

A123+W123 AudioSet + Word
features (arch123) 4.33 1.67 0.77 4.18

A1 AudioSet features
(arch1) 4.33 1.65 0.78 3.63

W123 Word features
(archs123) 4.24 1.67 0.79 6.64

W1 Word features
(arch1) 4.22 1.63 0.77 3.30

Random1 Random features
(arch1) 3.91 1.57 0.78 5.64

Random123 Random features
(arch123) 3.84 1.57 0.77 5.08

Germain
DeepFeatures

DCASE features
from [15] 3.83 1.47 0.77 6.72

Germain
(pre-trained)

DCASE features
from [15] 2.36 1.14 0.64 0.93

Waveform
(Wave-U-Net) Waveform 4.17 1.51 0.76 7.35

Waveform
(WaveNet) Waveform 3.72 1.40 0.75 6.00

Unprocessed
input 2.67 1.15 0.70 0.21

speech signals, presented seven at a time in a MUSHRA-like
paradigm. Listeners could listen to each clip as many times as
they wished and then gave each a numerical rating on a scale of
1-7. Listeners were provided with anchors corresponding to the
ends of the rating scale (1 and 7). The anchor at the high end
was always the original clean speech. The low-end anchor was
4-bit-quantized speech (an example of very high distortion). To
help ensure that participants were using the scale as instructed,
each experiment included 3 catch trials where two of the stimuli
were the two anchors. In order to be included in the analysis,
participants had to rate all instances of the high and low anchors
as 7 and 1, respectively.

We ran two identically structured experiments to evaluate
all of our audio transforms. Experiment 1 compared various
deep feature losses to baselines and contained all of the condi-
tions listed in Table 1. Experiment 2 compared losses derived
from different cochlear filter banks and contained all of the con-
ditions listed in Table 2. 54 and 105 participants met the inclu-
sion criteria for Experiments 1 and 2, respectively.

We also used three standard objective measures for eval-
uation: perceptual evaluation of speech quality (PESQ) [32],
short-time objective intelligibility measure (STOI) [33], and the
signal-to-distortion ratio (SDR) [34].

3. Results
3.1. Deep Feature Losses Yield Improved Denoising

The best-performing systems trained with deep perceptual fea-
ture losses outperformed both waveform-based baselines. The

A123
W123
Random123

Unprocessed Input

Waveform (Wave-U-Net)

Cochlear Model

Germain (DeepFeatures)
Germain (pre-trained)

Waveform (WaveNet)

Figure 2: Rated naturalness vs. SNR for speech processed by
Wave-U-Nets trained on deep feature losses, in addition to base-
line models trained to reconstruct clean speech waveforms, and
two versions of a related prior method [15]. Error bars plot
SEM (across 54 participants).

average objective and subjective evaluation results are shown in
Table 1. Human listeners found the speech processed by the
deep feature models to be more natural than the speech pro-
cessed by the baseline models. We plot the naturalness results
in more detail (Figure 2) for two of the best-performing models
trained on each of AudioSet features (A123) and word recog-
nition features (W123), as well as a model trained on random
features (Random123), the two baselines, and the two versions
of the denoising network from [15].

3.2. Learned vs. Random Deep Features

The benefit of deep feature losses was specific to models trained
with learned features. Audio transforms trained to reconstruct
random features did not produce better naturalism than the base-
line WaveNet, and performed worse overall than the baseline
Wave-U-Net (Figure 2; Table 1).

3.3. Comparison to Previous Deep Feature Systems

Our best-performing deep feature-based systems also outper-
formed previously published systems with deep feature losses.
The pre-trained system from Germain et al. [15] generalized
poorly to our test set. Furthermore, the Wave-U-Net we trained
using the deep feature loss from [15] also performed worse than
the baseline Wave-U-Net. These findings suggest that the fea-
tures used for the perceptual loss are important, and that the
DCASE task used in [15] may not have produced sufficiently
general features.

3.4. Effect of Task Used to Train Deep Features

The best results occurred for features trained on the environ-
mental sound recognition task – naturalism was consistently
higher than for features trained on word recognition (Figure 2;
Table 1). However, all of the models trained with feature losses
from our recognition networks produced more natural-sounding
speech than the baselines, and than the systems trained with
DCASE features based on [15]. There was no obvious benefit
from training on features from three different networks.

3.5. Cochlear Model Losses Match Deep Feature Losses

Although deep features produced better performance than base-
lines trained using waveform losses, we found that we could
reproduce their benefit using losses derived from the cochlear
model inputs to the recognition networks. Based on rated nat-
uralness, the transform trained with this ‘cochlear’ loss per-



Table 2: Experiment 2 results. Reported metrics are averaged
across the five tested SNR levels. Higher is better for all metrics.

Model name Loss function Natural. PESQ STOI SDR

Cochlear model
(N=20)

20 ERB-spaced
subbands 4.33 1.54 0.77 7.61

Cochlear model
(N=40; human)

40 ERB-spaced
subbands 4.30 1.55 0.75 7.16

Cochlear model
(N=160)

160 ERB-spaced
subbands 4.26 1.60 0.77 7.51

Cochlear model
(N=10)

10 ERB-spaced
subbands 4.22 1.49 0.76 7.08

Cochlear model
(N=80)

80 ERB-spaced
subbands 4.21 1.53 0.74 6.69

Cochlear model
(N=5)

5 ERB-spaced
subbands 3.93 1.42 0.75 6.02

Cochlear model
(N=40; linear)

40 linearly-
spaced subbands 4.32 1.51 0.76 6.82

Cochlear model
(N=40; env.)

Envelopes of 40
ERB subbands 4.16 1.59 0.75 6.94

Cochlear model
(N=40; reverse)

40 reverse-ERB-
spaced subbands 4.08 1.47 0.73 4.73

A123 AudioSet features
(arch123) 4.27 1.66 0.77 4.06

Waveform
(Wave-U-Net) Waveform 4.17 1.51 0.76 7.35

Unprocessed
input 2.47 1.15 0.70 0.21

formed just as well as our best model trained with deep feature
losses (Table 1).

3.6. Effect of Filter Bank Characteristics

The benefit of the cochlear loss depended to some extent on
the filter characteristics (Table 2; Figure 3, left). Worse per-
formance was obtained with a ‘reversed’ filter bank, with wide
filters at low frequencies and narrower filters at high frequen-
cies, opposite to that of the ear. Using the envelope of the filter
outputs also produced worse performance (counter to the hy-
pothesis that phase invariance might be critical). However, fil-
ters that were linearly spaced along the frequency axis worked
about as well as those modeled on the ear.

Worse performance was also obtained using only five fil-
ters (scaled to cover the frequency spectrum), but good results
were obtained provided at least 10 filters were used (Figure 3,
right). This result suggests that splitting the audio up into mul-
tiple frequency channels is sufficient to replicate the benefit of
deep features provided there are enough channels with reason-
ably sensible frequency tuning.

3.7. Objective Metrics

The models trained on deep recognition features also performed
better than the baselines according to PESQ and STOI. Notably,
this advantage was not evident when measured with SDR. The
filter bank-trained models showed the opposite trend – better
performance as measured by SDR, and worse via PESQ and
STOI (Table 2). These differences suggest that the filter bank
and deep feature losses are not fully interchangeable despite
having similar effects on overall naturalness. The results also
underscore the limitations of objective metrics for capturing hu-
man perception of altered speech.

Cochlear filter spacing

Reverse
Human (envelopes)

HumanLinear

160

Number of filters
20 80
4010

5

Figure 3: Rated naturalness vs. SNR for speech processed by
Wave-U-Nets trained on cochlear model losses with different
filter banks (select examples depicted above). Error bars plot
SEM (across 105 participants).

4. Discussion
Prior work has proposed denoising based on deep feature losses
[15, 16, 17, 18, 19], but has not evaluated it relative to methods
using simpler waveform- or subband-based losses. We found
that deep recognition features could be used to train denois-
ing systems that outperform waveform-based methods, but that
their benefit could be matched using a standard one-layer audi-
tory filter bank. The results thus provide no evidence that deep
features provide a unique benefit for denoising.

Although deep neural networks yield the best current mod-
els of biological sensory systems [9, 10], our results indicate
that these similarities are not yet sufficient to produce audio en-
hancement algorithms above and beyond what can be obtained
from simple filter bank models. However, it is possible that
building better models of human perceptual systems will also
yield feature losses [35, 36] that would better transfer their per-
ceptual benefits to humans, and produce benefits relative to sim-
pler approaches. It also remains possible that the audio quality
is limited more by the audio transform than the feature loss.
More expressive transforms, or transforms with stronger gener-
ative constraints, might yield a clearer benefit of deep features.

The benefits of deep feature and cochlear model losses rel-
ative to waveform-based losses were clear from the ratings of
human listeners, but were less evident in the objective metrics
we tested (PESQ, STOI, SDR). This result indicates that opti-
mizing for auditory model-based losses may provide perceptual
benefits that conventional objective metrics are poorly suited to
measuring, and suggests to the potential value of auditory model
features as new objective metrics.

In sum, we found that audio transforms trained to modify
noisy speech so as to reconstruct deep feature representations of
clean speech produce better denoising performance than trans-
forms trained to reconstruct clean speech waveforms, as mea-
sured by the ratings of human listeners. However, a similar
benefit was obtained using one-layer auditory filter banks, sug-
gesting the importance of multi-channel, overcomplete repre-
sentations rather than learned features per se.

5. Acknowledgements
The authors thank Ray Gonzalez for developing the training
dataset, John Cohn and the Oak Ridge National Laboratory for
use of Summit, and the MIT-IBM Watson AI Lab for funding.



6. References
[1] S. R. Park and J. Lee, “A fully convolutional neural network for

speech enhancement,” arXiv preprint arXiv:1609.07132, 2016.

[2] S. Pascual, A. Bonafonte, and J. Serra, “Segan: Speech
enhancement generative adversarial network,” arXiv preprint
arXiv:1703.09452, 2017.

[3] D. Wang and J. Chen, “Supervised speech separation based on
deep learning: An overview,” arXiv preprint arXiv:1708.07524,
2017.

[4] K. Qian, Y. Zhang, S. Chang, X. Yang, D. Florêncio, and
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