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d Laboratoire des Sytèmes Perceptifs, Département d’études cognitives, ENS, PSL Research University, CNRS, Paris, France 
e Program in Speech and Hearing Biosciences and Technology, Harvard, United States of America 
f Center for Brains, Minds, and Machines, MIT, United States of America 
g McGovern Institute for Brain Research, MIT, United States of America   

A R T I C L E  I N F O   

Keywords: 
Invariance 
Auditory scene analysis 
Reverberation 
Intensity 
Distance perception 

A B S T R A C T   

Sound is caused by physical events in the world. Do humans infer these causes when recognizing sound sources? 
We tested whether the recognition of common environmental sounds depends on the inference of a basic physical 
variable – the source intensity (i.e., the power that produces a sound). A source’s intensity can be inferred from 
the intensity it produces at the ear and its distance, which is normally conveyed by reverberation. Listeners could 
thus use intensity at the ear and reverberation to constrain recognition by inferring the underlying source in-
tensity. Alternatively, listeners might separate these acoustic cues from their representation of a sound’s identity 
in the interest of invariant recognition. We compared these two hypotheses by measuring recognition accuracy 
for sounds with typically low or high source intensity (e.g., pepper grinders vs. trucks) that were presented across 
a range of intensities at the ear or with reverberation cues to distance. The recognition of low-intensity sources 
(e.g., pepper grinders) was impaired by high presentation intensities or reverberation that conveyed distance, 
either of which imply high source intensity. Neither effect occurred for high-intensity sources. The results suggest 
that listeners implicitly use the intensity at the ear along with distance cues to infer a source’s power and 
constrain its identity. The recognition of real-world sounds thus appears to depend upon the inference of their 
physical generative parameters, even generative parameters whose cues might otherwise be separated from the 
representation of a sound’s identity.   

1. Introduction 

Just by listening, we can tell that we are walking next to a stream, 
that a mosquito is hovering nearby, or that an animal is growling. 
Though it is clear that humans can recognize environmental sounds 
(Balas, 1993; Giordano, 2003; Gygi, Kidd, & Watson, 2004, 2007; Gygi 
& Shafiro, 2011; Leech, Gygi, Aydelott, & Dick, 2009; Lemaitre & Heller, 
2013; McDermott & Simoncelli, 2011), the underlying computations 
remain poorly understood. 

A central challenge of recognition is that similar entities in the world 
can produce very different sensory signals, as when an object is viewed 
under different lighting conditions, or a sound is heard from near or far 
(Fig. 1A). Somehow our sensory systems must generalize across this 
variation while retaining the ability to discriminate different objects 

(Carruthers et al., 2015; DiCarlo & Cox, 2007; Liu, Montes-Lourido, 
Wang, & Sadagopan, 2019; Rust & DiCarlo, 2010; Sharpee, Atencio, & 
Schreiner, 2011). One possibility is that listeners separate or remove 
unwanted variation from a sound’s internal representation to achieve 
invariance, akin to how contemporary machine recognition systems are 
believed to associate sets of stimuli with labels (Goodfellow, Lee, Le, 
Saxe, & Ng, 2009; Tacchetti, Isik, & Poggio, 2018). In speech, variation 
in word acoustics due to speaking speed as well as the pitch and vocal 
tract of the speaker (Allen, Miller, & DeSteno, 2003; Hillenbrand, Getty, 
Clark, & Wheeler, 1995; Stevens, 2000) is often thought to be normal-
ized or separated from the representation of speech content (Holt, 2006; 
Johnson, 2005; Lehet & Holt, 2020; Nusbaum & Magnuson, 1997; 
Pisoni, 1997). Similar normalization mechanisms could underlie repre-
sentations of melodies, the recognition of which is also robust to time 
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dilation, pitch transposition, and other transformations (Attneave & 
Olson, 1971; Dowling & Fujitani, 1970; McDermott, Lehr, & Oxenham, 
2008). Background noise (Ding & Simon, 2013; Kell & McDermott, 
2019; Khalighinejad, Herrero, Mehta, & Mesgarani, 2019; Moore, Lee, & 
Theunissen, 2013; Rabinowitz, Willmore, King, & Schnupp, 2013; Scott 
& McGettigan, 2013), reverberation (Mesgarani, David, Fritz, & 
Shamma, 2014; Traer & McDermott, 2016) and intensity (Billimoria, 
Kraus, Narayan, Maddox, & Sen, 2008; Sadagopan & Wang, 2008) may 
also be partially separated from the representation of a sound’s source. 

However, invariant association of labels with stimuli is not the only 
goal of perception. In the case of audition, most everyday sounds are 
caused by physical interactions (e.g., impacts, scrapes, fracturing, fluid 
motion etc.) (Gaver, 1993). Listeners have some ability to describe these 
interactions for common sound sources (Conan et al., 2014; Grassi, 
2005; Grassi, Pastore, & Lemaitre, 2013; Guyot et al., 2017; Hjortkjær & 
McAdams, 2016; Lemaitre & Heller, 2012; Lutfi, 2008; Rocchesso & 
Fontana, 2003; Traer, Cusimano, & McDermott, 2019), raising the 
possibility that the inference of the mechanisms that compose the source 
might contribute importantly to everyday recognition even if they are 
not explicitly part of the verbal label with which a sound is identified. 

To investigate these possibilities, we examined the effect of intensity 
on sound recognition as a simple test case (Fig. 1B). A sound’s intensity 
at the ear depends upon the both the source’s intensity (which depends 
on the nature of the source) and the distance to the listener, due to the 
inverse-square law (Fig. 1B). These relationships are occasionally 
violated in modern listening conditions due to electrical amplification of 
sound, but are nonetheless present for most of our daily auditory 
experience. It is clear from everyday experience that listeners can 
recognize sound sources, and that they have some ability to judge a 
source’s intensity, and to estimate source distance. However, the rela-
tionship between the processes underlying these judgments is poorly 
understood. They could be largely distinct, with recognition that is 
invariant to intensity and distance cues. Alternatively, humans might 
jointly infer sources, their intensities, and their arrangement within the 
scene (causal inference). The latter hypothesis predicts that inferences of 
one parameter should tacitly affect those of another. For example, 
inferred distance could affect estimates of source intensity, which in turn 
could affect source recognition (Fig. 1C). Some evidence that intensity 
might influence recognition comes from the finding that listeners are 
biased by intensity in sound memory tasks (Susini, Houix, Seropian, & 

Lemaitre, 2019), but to our knowledge the effect on recognition of 
everyday sounds had not been explicitly measured prior to this study. 

In Experiments 1—9 we investigated how source recognition was 
affected by sound intensity at the ear, and by reverberation, which 
conveys source distance and could thus indirectly influence the inferred 
intensity of a source. We compared the effects for high- and low- 
intensity sources (e.g., a truck and a pepper grinder). Our results show 
that listeners consistently misidentify low-intensity sources when pre-
sented with either high intensities at the ear or reverberation conveying 
distance, both of which entail an implausibly high source intensity. This 
result contradicts the hypothesis that recognition is invariant to in-
tensity and reverberation, but is consistent with causal inference, 
because neither high-intensity nor distant sounds can possibly be 
generated by low-intensity sources. Experiments 1–6 were run with a 
large set of sound recordings made in natural scenes. To ensure that our 
results were robust to the reverberation intrinsic to these natural re-
cordings, in Experiments 7–9 we replicated key results with a set of 
studio-recordings that had minimal reverberation. 

To address the possibility that the result could instead be driven by 
unfamiliar combinations of acoustic cues, with low-intensity sources 
misidentified when they are encountered in conditions that have plau-
sibly not been previously encountered by participants (i.e., at high in-
tensities or with reverberation appropriate for enclosed spaces), we 
conducted two follow-up experiments. In Experiments 10 and 11 we 
explicitly tested whether the reverberation we applied sounded appro-
priate for our recorded sounds. We found that the reverberation was 
heard to be less appropriate for low-intensity sound sources typically 
encountered outdoors than low-intensity sources typically encountered 
indoors, consistent with the lower reverberation found in outdoor en-
vironments (Traer & McDermott, 2016). However, when the source 
recognition experiments (Experiments 4 and 8) were reanalyzed sepa-
rately for indoor and outdoor sounds, low-intensity outdoor sounds were 
no more frequently misidentified than indoor sounds. Humans thus 
misidentify sources under conditions that are physically impossible in 
natural conditions, but not conditions that are acoustically atypical, a 
result that provides additional support for causal inference. 

Finally, we replicated the key results with experimental variants 
designed to rule out various potential confounds. We show that the main 
results cannot be explained by intrinsic differences in our sound sources, 
such as spectral content, or by the artificial amplification of typically 

Fig. 1. Overview and hypotheses. (A) Schematic depicting the 
impact of source intensity and distance on the intensity at the 
ear: while sounds with high-intensity sources (e.g., a truck) 
induce a wide range of ear intensities depending on the dis-
tance (due to the inverse-square law), low-intensity sources (e. 
g., pepper grinder) never produce high ear intensities. (B) A 
graphical model of the interdependencies of the acoustic 
features we investigate: solid lines represent causal relation-
ships in the generative process, dashed lines represent hypo-
thetical inferences humans may use to identify the sound 
source. One hypothesis is that source identity, intensity and 
distance are each inferred separately. Another possibility is 
that that these judgments inform each other. We use manip-
ulations of sound intensity and reverberation to investigate 
whether source recognition is affected by perceived source 
intensity, which might be inferred from perceived distance.   
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inaudible structure (Experiment 12). 
These results suggest that an interwoven set of inferences underlie 

everyday recognition: listeners infer distance from reverberation, judge 
source intensity from the inferred distance and intensity at the ear, and 
then identify sources in part based on the inferred source intensity 
(Fig. 1C). Sound recognition thus appears to be intrinsically linked to 
intuitive causal inference of the scene and source properties. 

2. Experiments 1 and 2: everyday sound recognition is not 
invariant to intensity 

We began by measuring the ability of listeners to recognize everyday 
sounds presented to the ear at different intensities. We then assessed 
whether the typical intensity of the sound source in the world affected 
listeners’ performance. 

To assess identification accuracy, we first used an “open set” recog-
nition task (Experiment 1): on each trial listeners heard a 2-s sound and 
were asked to type a description of it (e.g., “Hand grinder. For spices or 
coffee beans.”; Fig. 2A, top). We adopted this methodology because it is 
more ecologically relevant than a forced-choice task in which listeners 
are presented with a fixed set of options (as have been used in many 
previous studies of environmental sound recognition (Gygi et al., 2004; 
Gygi & Shafiro, 2011; McDermott & Simoncelli, 2011)). We were also 

concerned that affording listeners a set of possible sound identities 
might artificially boost performance and mask differences between 
conditions that might otherwise be present in real-world conditions. To 
assess the accuracy of the descriptions provided by each listener, we had 
online workers guess the sound heard by each listener based on these 
descriptions (via Amazon’s Mechanical Turk platform; Fig. 2A, bottom). 
The online workers, who did not hear the sound, chose the sound label 
that best fit the listener’s description from a list of 10 possible choices. 
The accuracy of a listener’s descriptions was quantified as the fraction of 
trials on which the online workers were able to correctly identify the 
sound from their descriptions. 

To ensure that the results of Experiment 1 were not specific to the 
open set recognition task, in Experiment 2 we ran the same sound 
recognition task with a multiple-choice (10 choices), rather than “open 
set”, task. 

2.1. Method 

All experiments were approved by the Committee on the Use of 
Humans as Experimental Subjects (COUHES) at MIT, and all participants 
gave informed consent. No participant, in-lab or online, took part in 
multiple experiments, ensuring that all participants were naïve to the 
stimuli. In-lab experiments were conducted in soundproof booths with 

Fig. 2. Experiments 1–3: Misidentification of sound sources presented with implausible intensities suggests casual inference. (A) Schematic of the open-set 
recognition task used in Experiment 1, which was intended to be more sensitive and ecologically valid than a traditional forced-choice experiment. In-lab partic-
ipants (top) heard sounds at different presentation intensities and typed descriptions of what they heard, here with the sound of a pepper grinder as an example. A 
separate group of online workers (bottom) tried to identify the sound the in-lab participants heard from a list of 10 possible choices using only the written de-
scriptions of the in-lab participants. (B) Results of Experiment 1: Recognition accuracy for low-intensity and high-intensity sources as a function of the physical 
intensity at which they were presented to the ear. Recognition accuracy reflects the fraction of online graders who correctly guessed the sound from the in-lab 
descriptions. Error bars show one standard error of the mean across participants from the in-lab experiment. Recognition declined for low-intensity sources when 
presented above 60 dB SPL, which is inconsistent with the hypothesis that listeners are invariant to intensity. (C) Results of Experiment 1 with overall recognition 
accuracy equated for low-intensity and high-intensity sources. Difficulty was equated by removing the easiest-to-recognize high-intensity sources and the hardest-to- 
recognize low-intensity sources (averaging across presentation intensity). The interaction between source intensity and presentation intensity persisted when con-
trolling for overall difficulty. (D) Results of Experiment 2: multiple-choice source recognition. There was again a significant interaction between source intensity and 
presentation intensity, but performance was higher in all conditions, as expected. (E) Schematic of the task from Experiment 3, in which online workers compared the 
responses of participants from Experiment 1 to the original sound label and judged which of the two corresponded to a higher-intensity sound. (F) Results of 
Experiment 3: The fraction of typed responses from Experiment 1 that were judged to correspond to louder sources than the original label. Results are plotted for low- 
and high-intensity sources as a function of the presentation intensity. Dashed line represents chance performance (i.e., the point where the typed descriptions was on 
average judged to be no louder or quieter than the correct original sound label). 
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Table 1 
The 300 sounds used in experiments. Sounds were partitioned into 4 groups based on their rated real-world source intensity on a 1 (lowest-intensity) to 10 (highest) 
scale (see Appendix A for details). The rated intensity is shown next to each sound. In Experiments 1-3 and 12 the left column of 75 sounds were classed as “low- 
intensity” and the right column of 75 sounds as “high-intensity”. The subset of sounds used in Experiments 4-6 and 10 are marked with asterisks (*). The difficulty 
matched-subsets (Fig 2C) are underlined. The distance-matched subsets used in Experiments 4-6 and 11 are listed in Tables S1-S3.  

Low-intensity sources 
(0-25th percentile) 

25-50th percentile 50-75th percentile High-intensity sources 
(75-100th percentile) 

2.44 heart beats* 4.08 pepper grinder* 4.88 bus decelerating* 5.76 hand saw* 
2.90 cat purring* 4.08 car windows* 4.89 wind chimes* 5.77 witch cackle 
2.92 clipping hair 4.09 camera taking a picture* 4.89 sheep* 5.77 hair dryer* 
2.97 car idling* 4.11 crumpling paper* 4.89 film reel* 5.80 crowd noise 
2.98 brushing hair 4.11 triangle 4.93 spanish 5.81 banjo 
2.98 drinking* 4.13 spray can shaking* 4.94 toy squeaks* 5.94 accordian 
3.08 rubbing cloth 4.14 acoustic bass 4.94 nose blowing 5.98 truck beeping* 
3.08 salt shaker* 4.17 balloon deflating 4.94 ping pong* 6.00 tap dancing 
3.18 rubbing hands* 4.17 dog drinking* 4.94 turkey gobble* 6.05 rooster crowing* 
3.21 slicing bread* 4.17 jumping rope* 4.98 rollerblading 6.08 paper shredder 
3.21 scissors cutting paper* 4.19 shoveling* 5.03 sleigh bells 6.09 hammering a nail* 
3.21 leather coat 4.19 wind* 5.05 flute 6.10 pinball* 
3.28 peeling* 4.20 writing on a chalkboard* 5.05 woman speaking 6.11 telephone ringing* 
3.28 peeling 4.21 door opening* 5.06 morse code 6.11 slot machine 
3.28 flag* 4.21 sipping 5.06 running on gravel* 6.12 bowling* 
3.30 turning a lock 4.22 door creaking 5.06 tennis volley* 6.16 applause* 
3.31 bees* 4.22 elevator door 5.07 bassoon 6.24 crying* 
3.32 match lighting 4.24 liquid pouring out of a bottle* 5.08 dog whining* 6.24 tree falling 
3.32 writing on paper* 4.25 scrubbing dishes* 5.08 duck quack* 6.25 laughing* 
3.36 coloring* 4.26 coins jingling in a pocket 5.08 rain* 6.29 lion growl* 
3.37 opening a letter 4.27 bus accelerating* 5.11 giggling 6.30 car skidding* 
3.39 breathing* 4.27 fax 5.11 hawk screech* 6.32 orchestra tuning 
3.41 key opening door* 4.27 walking on a hard surface* 5.11 water splashing* 6.35 bass drum hits 
3.45 dove cooing 4.29 window blinds 5.11 ringtone 6.37 volcanic eruption 
3.48 car deccelerating 4.30 chicken cluck* 5.11 cartoon sound effects 6.38 dentist drill* 
3.51 dice roll 4.30 cash register* 5.13 a capella singing 6.41 doorbell* 
3.52 humming* 4.35 shopping cart 5.16 pool balls colliding* 6.42 blender* 
3.54 scratching* 4.35 walking on gravel* 5.17 pig snorting* 6.43 school hallway 
3.56 mac startup sound 4.37 walking on leaves* 5.17 tambourine 6.48 truck* 
3.56 finger tapping* 4.38 toilet flushing 5.19 tuba 6.52 organ 
3.59 screwing off lid* 4.38 grunting and groaning* 5.21 locker closing* 6.53 drum roll 
3.61 spray can spraying* 4.38 radar beeps 5.21 sails flapping 6.59 crowd laughing* 
3.63 can opening 4.38 windows startup sound* 5.22 heart monitor 6.64 church bells* 
3.67 door sliding shut* 4.40 whale call 5.22 pager beeps 6.65 gong* 
3.67 running on sand 4.41 frying* 5.23 air hockey* 6.68 tractor* 
3.67 tooth brushing* 4.43 biting and chewing* 5.24 waves* 6.70 alarm clock 
3.67 phone vibrating* 4.45 chiseling 5.25 Chinese 6.70 electric drill* 
3.67 drawer opening* 4.48 skate boarding* 5.25 gorilla 6.73 vacuum* 
3.69 chair rolling* 4.48 harp 5.27 dialup* 6.73 boat horn* 
3.69 coffee machine* 4.48 knives sharpening* 5.28 baby babbling 6.74 monkey scream* 
3.70 owl hooting* 4.51 bike bell* 5.29 marching* 6.77 traffic noises* 
3.70 coin in a vending machine* 4.51 bird song* 5.29 shower* 6.79 whistle* 
3.70 camera turning on 4.51 swimming* 5.30 sword fighting 6.80 baby crying 
3.75 keys jingling* 4.51 whistling* 5.31 rocking chair* 6.82 bagpipes 
3.75 wing flapping* 4.52 dog panting* 5.36 reception desk bell* 6.83 dog barking* 
3.77 dial tone* 4.53 car driving through a puddle 5.37 piano 6.86 school bell* 
3.78 drink fizzing 4.56 French 5.38 dishes clanking* 6.91 hammering metal* 
3.79 paper cutter 4.56 Russian 5.39 grandfather clock* 6.95 noisemaker 
3.80 water boiling* 4.57 rattlesnake* 5.39 horse neighing* 6.95 helicopter* 
3.80 chopping food* 4.62 Arabic 5.39 knocking on door* 7.08 gunshots* 
3.81 newspaper page turning* 4.63 Hindi 5.40 popcorn popping* 7.12 car horn* 
3.81 opening a soda bottle 4.67 basketball dribbling* 5.41 geese honking* 7.16 lawn mower* 
3.83 water dripping* 4.67 screwing in a nail 5.41 cuckoo clock* 7.19 glass shattering* 
3.87 sighing 4.67 cricket* 5.41 radio static* 7.19 shouting* 
3.89 clock ticking* 4.67 frog croaking* 5.43 cicadas* 7.22 train whistle* 
3.89 drawer closing 4.67 stones tumbling 5.43 oboe 7.27 train warning bell* 
3.90 stream* 4.68 running on a hard surface 5.44 electric bass 7.28 fireworks* 
3.90 shuffling* 4.69 darth vader 5.48 castanet 7.29 drum solo 
3.92 soda pouring into cup* 4.72 fan 5.52 printing* 7.30 chainsaw revving* 
3.94 writing on whiteboard 4.73 cat meow* 5.53 seal 7.30 cymbal crash 
3.94 microwave* 4.75 horse galloping* 5.55 bear growling* 7.32 sports arena buzzer 
3.94 oldfashioned dialer* 4.77 bathwater* 5.56 chopping wood* 7.35 scream* 
3.94 gargling* 4.78 car accelerating* 5.58 kettle whistling* 7.38 thunder* 
3.95 typing* 4.79 record scratching 5.59 kid speaking 7.42 motorcycle revs* 
3.95 fire* 4.81 ratchet* 5.59 car engine starting* 7.48 race car* 
3.95 ice in cup 4.81 roulette wheel 5.59 guitar 7.51 fire alarm* 
3.97 bicycle* 4.81 ice machine 5.60 violin 7.56 crowd booing 
3.98 dialing* 4.83 man speaking 5.62 seagulls* 7.63 siren* 
4.02 inflating a balloon* 4.84 wolves howling 5.63 cow mooing* 7.68 train passing by* 
4.03 music box 4.84 running up stairs* 5.64 gavel hits 7.69 explosion* 

(continued on next page) 
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calibrated headphones (Appendix A). 

2.1.1. Participants 
For clarity, all participants who listened to sounds and tried to 

identify the source are referred to as ‘listeners’, to distinguish them from 
the ‘online workers’ who graded results. 42 in-lab listeners participated 
in Experiment 1 (22 female, 19 male; 1 listener’s gender was not 
recorded; mean age = 35.7 years; SD = 13.9 years). The responses from 
the 42 listeners from Experiment 1 were scored by 500 online workers. 
22 in-lab listeners (12 female, 10 male; mean age = 25.4 years; SD = 8.8 
years) participated in Experiment 2. Participants had their hearing 
sensitivity assessed to ensure they could adequately hear the stimuli 
(Appendix B). A power analysis assuming an interaction effect size of 
ηp

2=0.2 (which is on the lower end of a “large” effect size as defined by 
Cohen (Cohen, 1988)) indicated that 42 listeners would be needed to 
detect an effect of this size 80% of the time using a significance threshold 
of 0.05. The design (in which each participant heard a sound once, at 
one of 7 possible presentation intensities) necessitated a sample size that 
was a multiple of 7. We accordingly ran 42 listeners in Experiment 1, 
and about half as many listeners in Experiment 2 (which served as 
methodological control). 

2.1.2. Materials and procedure 
Listeners were asked to identify 300 unique sounds (Table 1). The 

sounds were sourced from sound effects CDs and the internet, and were 
selected to be relatively clean and recognizable (Norman-Haignere, 
Kanwisher, & McDermott, 2015) and to include a broad range of natural 
sounds heard in daily life. The sound set included some music (34 
sounds) and speech stimuli (12 sounds), which might involve recogni-
tion mechanisms distinct from those for other environmental sounds 
(Leaver & Rauschecker, 2010; Norman-Haignere et al., 2015), but the 
exclusion or inclusion of these sounds did not qualitatively affect the 
results of the experiment. All of the sounds were 2 s in duration and were 
resampled to 20 kHz with 16-bit resolution (these were the lowest 
sampling rates and bit depths across the set of recordings we assembled, 
and so we matched all stimuli to these values). Linear ramps (10 ms) 
were applied to the beginning and end of each sound. All experiments 
manipulating intensity (Experiments 1–3 and 12) used all 300 sounds. 

Sounds were presented over headphones at intensities ranging from 
low (30 dB SPL) to high (90 dB SPL) in 10 dB increments. Each listener 
heard each sound once. Across listeners, each sound was presented an 
equal number of times at each of the seven different intensities. Each 
intensity condition was presented the same number of times for each 
listener. 

In Experiment 1, listeners were asked to type their best guess of the 
sound’s identity (as a single- or multi-word description), giving as much 
detail as possible. Because listeners were asked to identify the sound, 
they generally gave semantically meaningful descriptions (e.g., “clock”) 
rather than acoustic descriptions (e.g., “tic tic tic”). Trials were 
completed in four blocks of 75, between which listeners were encour-
aged to take a break. 

To score the responses, we had online workers read descriptions from 
the in-lab listeners from Experiment 1. The workers did not know the 
task condition nor could they hear the sounds. For each description (e.g., 
“wind instrument playing a melody”), they were asked to identify the 
sound being described from a list of 10 choices drawn from the labels of 

the sound set used for the experiment (e.g., “Clarinet”, “Seagull”, “Drum 
roll”, “Violin”, etc.). The 9 foils were drawn randomly from the other 
sounds in the experiment. 

Most of the Experiment 1 descriptions (97%) were scored by two 
workers. A small number were scored by 1 or 3 workers (due to a 
mixture of unanswered questions from the workers and idiosyncrasies in 
the way new questions were posted using the Mechanical Turk batch 
interface). Although each in-lab description was only scored by 
approximately 2 online workers, our analysis was based on the average 
recognition accuracy across listeners and across a large collection of 
low-intensity and high-intensity sound sources. Since there were 75 
sounds for the low-intensity and high-intensity source groups, and since 
each sound was described by 6 in-lab listeners for each level tested, the 
average performance at a particular presentation intensity for either 
low-intensity or high-intensity sources was based on data from 450 in- 
lab descriptions and approximately 900 worker scorings. As a conse-
quence, the pattern of mean recognition performance across conditions 
(presentation intensity x source group) was stable across independent 
sets of Mechanical Turk ratings (split-half Pearson correlation was 0.98). 

To assess the typical source intensity for a sound, we had a different 
group of online workers rate how “quiet” or “loud” sounds typically are 
in the world on a scale of 1 (most quiet) to 10 (most loud) (Appendix C). 
The 25% of sounds with the lowest and highest ratings were used as the 
low-intensity and high-intensity sources, respectively, in the subsequent 
analysis (results for all quartiles are shown in Fig. S1). 

2.1.3. Statistics 
In all experiments, repeated measures analyses of variance 

(ANOVAs) were used to test for main effects and interactions. The 
ANOVAs were performed on the proportion of trials that each listener 
got correct for each sound group and source condition. Mauchly’s test 
was used to test for violations of sphericity, and was never significant, 
indicating that the assumptions of the ANOVA were not violated. t-tests 
were used to directly compare two conditions of interest. In Experiment 
2, in which participants scored above 75% in all conditions, the data 
were arc-sine transformed prior to performing statistical tests. 

2.2. Results and discussion 

If sound recognition is invariant to sound intensity, listener re-
sponses should be little affected by intensity, perhaps improving with 
presentation intensity due to better audibility. But if recognition instead 
depends upon the inferred source intensity, results should differ for low- 
intensity and high-intensity sources. For high-intensity sources, such as 
a jackhammer or a lion’s roar, recognition largely increased with the 
presentation intensity (Fig. 2B; though there was a non-significant trend 
for poorer performance at the highest levels; t(41) = 1.88, p = 0.07 for 
comparing 70 and 90 dB). But for low-intensity sources, recognition 
peaked at moderate presentation intensities and then declined (t(41) =
2.85, p < 0.01 for comparing 60 and 90 dB) (intermediate trends were 
evident for sounds rated as having intermediate source intensities; Fig. 
S1). This difference produced an interaction between the effect of pre-
sentation intensity and the source intensity (F(6, 246) = 6.50, p < 0.001, 
ηp

2=0.137, comparing low-intensity and high-intensity sources). 
The low-intensity sources were less recognizable overall than the 

high-intensity sources (F(1, 41) = 294, p < 0.001, ηp
2=0.878). To ensure 

Table 1 (continued ) 

Low-intensity sources 
(0-25th percentile) 

25-50th percentile 50-75th percentile High-intensity sources 
(75-100th percentile) 

4.03 windup toy* 4.84 shaving with electric razor* 5.66 cello 7.72 car alarm 
4.05 paper tearing* 4.85 busy signal* 5.66 coughing* 7.89 car crash* 
4.05 zipper* 4.85 Italian 5.72 harmonica 7.91 crowd cheering* 
4.06 coins dropping* 4.87 German 5.73 crow* 8.16 plane taking off* 
4.08 grating food* 4.87 walking with heels* 5.73 clarinet 8.28 jackhammer*  
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that this difference in overall recognizability could not somehow explain 
the interaction between presentation intensity and the source type, we 
equated overall recognition rates by eliminating the most-recognized 
and least-recognized sources in each group, respectively (we removed 
25 sounds from each group, leaving 50 sounds per group in total). As is 
evident in Fig. 2C, the interaction between the effect of presentation 
intensity and the source intensity persisted after this manipulation (F(6, 
246) = 7.84; p < 0.001, ηp

2=0.160). 
When a multiple-choice task was used to measure recognition 

(Experiment 2; Fig. 2D), overall performance was higher, but the 
interaction between presentation intensity and real-world intensity 
remained (after arc-sin transforming the data: F(6, 126) = 2.29, p =
0.039). However, we note that the effect was weaker with the multiple- 
choice paradigm (ηp

2=0.098), confirming our initial worry that such 
paradigms would artificially inflate recognition performance and 
obscure differences between conditions. 

3. Experiment 3: sound descriptions are consistent with 
inferences about source intensity 

If listeners are using the inferred source intensity as a cue to recog-
nition, then when listeners misidentify low-intensity sources presented 
at high intensities, their erroneous answer should be a high-intensity 
source. To test this prediction, we analyzed the descriptive responses 
given for each sound in Experiment 1 (see Table 2 for examples). We 
presented a different set of online workers with pairs of sound de-
scriptions: a typed response from a trial in Experiment 1 along with the 
corresponding original source label. The online workers were asked to 
select the description that described a “louder” sound (Fig. 2E). We then 
measured the proportion of trials for which the participant’s description 
was judged as louder than the presented sound source, as a function of 
whether the source was high- or low-intensity, and the presentation 
intensity. If the participants tended to give descriptions of sources with 
about the same source intensity as the heard source, the online workers 
should produce chance results. This would be expected when the pre-
sentation intensity was appropriate for the source (i.e., low for low- 
intensity sources, and high for high-intensity sources). The responses 
might then be biased upwards or downwards as the presentation in-
tensity increased or decreased from this level. 

3.1. Method 

3.1.1. Participants 
210 online workers participated in Experiment 1 (113 female; mean 

age = 33.5 years; SD = 14.7 years) – five for each of the 42 participants. 

3.1.2. Materials and procedure 
Each text description typed by listeners in Experiment 1 was paired 

with the original description of the sound (Table 1) and presented to a 
second set of Mechanical Turk workers. The workers were told that the 
two descriptions were both provided by listeners, and were asked to 
choose which of the two sounds being described was the “louder” 
source. The order in which the two options were presented (source label 
and listener description) was randomized. Workers were instructed that 
if the two descriptions were very similar, they should guess. Workers 
were not given any other information about the sounds or the experi-
ment details. Five online workers independently performed this judg-
ment for each response from a participant in the original experiment. 
Each data point in the results graph thus reflects 2250 worker scorings 
(of 450 in-lab typed descriptions). As a consequence, the results graph 
(proportion judged louder vs. presentation intensity x source group) was 
stable across splits of the Mechanical Turk responses (split-half Pearson 
correlation was 0.99). 

3.2. Results and discussion 

The causal inference hypothesis predicts that a source presented at 
an atypically high intensity will be misidentified as a “louder” source – 
because the original source could not possibly have created such a high- 
intensity sound. Thus, the fraction of sources misidentified as “louder” 
should increase with presentation intensity, and should be higher for 
low-intensity sources at all presentation intensities (because for any 
given presentation intensity, more low-intensity sources will be louder 
than normal than high-intensity sources). The results (Fig. 2F) show that 
both these effects are observed: the listeners in Experiment 1 were more 
likely to describe a high-intensity source when the presentation intensity 
was high (F(6,246) = 24.0, p < 0.001,ηp

2=0.369), and such errors were 
more common for low-intensity sources (F(1,41) = 57.7, p <
0.001,ηp

2=0.584). In addition, chance performance occurred at low 
presentation intensities (40–50 dB SPL) for low-intensity sources, and 
high intensities (90 dB SPL) for high-intensity sources. These results are 
consistent with the idea that listeners infer the intensity of the source, 
and give descriptions that are consistent with this inferred intensity. 

To assess whether the high-intensity source labels that were 
mistakenly chosen by participants tended to identify sounds that were 
otherwise acoustically similar to the presented low-intensity source, we 
analyzed their acoustics. For each low-intensity source mistakenly 
identified by a participant, we measured both the mean power in each of 
a set of gammatone filters (commonly termed the “excitation pattern”), 
and the mean power in each of a set of spectrotemporal modulation 
filters (see Appendix E for details of the filter banks). We then made the 
same power measurements in the high-intensity source recording cor-
responding to the erroneously selected label, as well as a distinct high- 
intensity source recording with the closest loudness rating (from 
Table 1). We then compared the correlation of the power measurements 
in the low-intensity source with those for each of the two high-intensity 
sources (after subtracting out the mean of the power measurements 
across the entire sound set). This analysis revealed that participants 
tended to choose high-intensity source labels corresponding to sounds 
whose modulation statistics were more similar to those of the presented 
low-intensity source than would be expected by chance. Specifically, the 
correlation with the chosen label (median = 0.33) was significantly 
higher than that with the unrelated label (median = 0.05) by a sign test 
(p = 0.009). There was no such relationship for the excitation pattern (p 
= 0.33), consistent with the idea that higher-order statistical properties 
are more important for sound identification than the spectrum 

Table 2 
Some example source labels and listener text responses for Experiment 1, from 
trials in which low-intensity sounds presented at 90dbSPL were misidentified 
(proportion correctly identified = 0). The 22 examples here are the trials 
encountered by the first 10 participants (of 42) who took part in Experiment 1.  

True source label In-booth listener text response (Exp1) 

Velcro Rocks 
Typing Motor sound 
Flag Thunder 
Microwave Drying clothes 
Grating food Machine 
Dial tone Horn 
Chair rolling Pinball 
Slicing bread Fixing a motorcycle 
Drawer opening Pully 
Key opening door Bolt action 
Match lighting Automatic inflation or deflation 
Coloring Scribbling on chalkboard 
Soda pouring into a 

cup 
When you have a nearly empty fountain drink with ice – those 
last couple of sips 

Wing flapping Shaking something up 
Chopping food Something being stuck/applied to something else 
Microwave Airplane 
Leather coat Motorbike noise or Velcro ripping 
Peeling Casino machine 
Opening a letter Person noisily going-through a drawer 
Phone vibrating Horn or fire alarm 
Slicing bread Car noises –exhaust or engine 
Spray can spraying Machine noise –possibly welding tool  
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Fig. 3. (A) Illustration of the effect of distance on reverberation. When a source is near the listener (top) the direct path (blue) is short (left) and creates a high 
amplitude peak in the Impulse Response (right). When a source is distant from the listener (bottom), the direct path is longer, producing a correspondingly lower 
amplitude peak in the Impulse Response. In contrast, the total contribution of the reflections, which arrive after the initial peak, is similar for near and distant 
sources. We show 2nd-order reflections (i.e., the paths that reflect off of 2 surfaces before arrival), which hit both the near and far wall. For simplicity neither 1st- 
order nor higher-order reflections are shown in the room schematic. The acoustic contribution of higher-order reflections is shown in grey at right. Two of the 2nd- 
order reflections (near-wall; green) have longer paths and lower amplitude peaks, but two (far-wall; purple) have shorter paths and are correspondingly higher in 
amplitude. Thus, the total contribution from 2nd-order reflections is not substantially changed by distance. The same logic applies to all higher-order reflections. 
Because the power of direct-path sound decreases with distance, the Direct-to-Reverberant ratio (top right) decreases with source distance. Thus, the presence of 
reverberation with small DRR implies greater distance and thus a more powerful source for a given sound intensity at the ear. Note that impulse responses also vary in 
the decay time, commonly quantified as the RT60. In simple indoor conditions, the DRR and RT60 can vary independently. The RT60 is typically fairly constant 
within a room, and varies across rooms depending on their size and on the material of their walls. By contrast, the DRR varies within a room depending on the 
distance of the source to the listener. (B) Cochleagrams of an example environmental sound from Experiment 5 (the sound of walking) without (top) and with 
(bottom) added reverberation. The reverberation was synthesized to be typical of a 10 m separation in a large room. (C) Schematic of Experiment 4 (effect of 
reverberation on source recognition). (D) Results of Experiment 4: Recognition declined more for low-intensity than high-intensity sources when presented in 
reverberation, consistent with causal inference of source intensity. (E) Results of Experiment 4 with difficulty-matched subsets of sources. (F) Schematic of 
Experiment 5 task (identical to Experiment 3). (G) Results of Experiment 5: The fraction of typed responses from Experiment 4 which were judged to correspond to 
louder sources than the true source label, as a function of the reverberation and source-intensity. (For interpretation of the references to colour in this figure legend, 
the reader is referred to the web version of this article.) 
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(McDermott & Simoncelli, 2011). 

4. Using reverberation to convey source distance 

Another stimulus variable that should affect inferred source intensity 
is reverberation. In natural scenes, source-listener distance affects 
reverberation in a characteristic way. The direct arrival (i.e., the first 
and highest-intensity peak of the impulse response) decreases in in-
tensity with source-listener distance according to the well-known in-
verse square law (Fig. 3A). However, in many cases the average intensity 
of reflected sound (i.e., the reverberation) does not change appreciably 
with distance because as distance increases, some reflection paths 
decrease in length and others increase in length. The Direct-to- 
Reverberant Ratio (DRR), which compares the intensity of the direct 
sound to that from all the reflections, therefore generally decreases with 
source distance both indoors (Bronkhorst & Houtgast, 1999; Mershon & 
Bowers, 1979; Zahorik, Brungart, & Bronkhorst, 2005) and outdoors 
(Naguib & Wiley, 2001) (Fig. 3A). Once convolved with a source signal, 
the DRR is no longer explicitly available in the sound signal. However, 
humans can recognize source distance from reverberant recordings, and 
are thought to estimate the DRR to do so (Bronkhorst & Houtgast, 1999; 
Mershon & Bowers, 1979; Zahorik et al., 2005). 

5. Experiment 4: reverberation impairs recognition of low- 
intensity sources 

In Experiment 4, we asked participants to identify sound sources 
both with and without the addition of synthetic reverberation that 
implied a distant source. Under the causal inference hypothesis, greater 
implied distances via reverberation should be used to infer greater 
source intensities, and should produce similar errors as Experiments 1–2 
even when intensity at the ear is held constant. Specifically, low- 
intensity sources should be misidentified at greater rates than high- 
intensity sources when rendered at a distance. By contrast, under an 
invariance hypothesis, recognition should be dependent on the extent to 
which reverberation could be separated from the sound source. This 
need not entail complete invariance to reverberation, but whatever 
invariance might be achieved should be similar for low- and high- 
intensity sources. 

5.1. Method 

5.1.1. Participants 
16 in-lab listeners (7 female, 9 male; mean age = 40.1 years; SD =

13.5 years) took part. Pilot experiment data (not included in the results 
presented here) suggested an interaction effect size ofηp

2=0.481. A power 
analysis indicated 11 participants were needed to detect an effect of this 
size 80% of the time using a significance threshold of 0.05. 

5.1.2. Stimuli and procedure 
All experiments manipulating reverberation (Experiments 4–11) 

used a subset of 192 sounds (Table 1). This subset contained neither 
speech nor music but was otherwise a representative and randomized 
subsampling of the original 300. The intensity and reverberation ex-
periments were originally begun as separate studies and thus were not 
designed to match exactly. In all reverberation experiments (Experi-
ments 4–11) “high-" and "low-" intensity sounds refer to the upper/lower 
halves of the 192-sound subset (i.e., 96 sounds) rather than the upper/ 
lower quartiles that were used in the intensity experiments (1–3 and 12). 

Each listener heard each sound once, presented either with or 
without reverberation. The reverberation conditions were balanced 

across listeners, such that while each listener only heard each sound 
once, each source was equally likely to be presented as reverberant or 
anechoic. 

We intended for our reverberation manipulations to exceed the 
magnitude of any incidental reverberation in the recordings, and so 
applied fairly pronounced synthetic reverberation. The reverberation 
(used in Experiments 4–11) was synthesized as described in (Traer & 
McDermott, 2016) with a Direct-to-Reverberant Ratio (DRR) of 20 dB, 
consistent with a source-receiver separation of about 10 m. We gave the 
reverberation a broadband decay time (RT60) of 1 s, consistent with a 
large interior space such as a subway station, such that the overall 
amount of reverberant energy in the resulting sound signal was high. 
Fig. 3B shows cochleagrams of an example stimulus with and without 
added reverberation. 

The in-lab task and online scoring were identical to Experiment 1 
(Fig. 3C) except that all the sounds were presented at 70 dB SPL and each 
listener’s response was graded by 5 different workers instead of 2. 

5.2. Results and discussion 

As shown in Fig. 3D, recognition was worse overall in reverberation, 
as expected given the substantial distortion imposed by the reverbera-
tion (main effect of reverberation: F(1,15) = 252, P < 0.001, ηp

2=0.944). 
However, the effect of the reverberation was less pronounced for high- 
intensity sources, producing a significant interaction between rever-
beration and source intensity (F(1,15) = 62.0, p < 0.001, ηp

2=0.805). To 
ensure the interaction was not driven by differences in difficulty be-
tween the source classes, we equated overall recognition rates for the 
condition without added reverberation, by eliminating the most- 
recognized and least-recognized sources when presented without 
reverberation in each group. The matched sets were obtained with data 
from half of the participants, and the data from the other half is plotted 
in Fig. 3E. As is evident in Fig. 3E, the interaction between the effect of 
presentation intensity and the source intensity persisted after this 
manipulation (F(1,7) = 16.7, p = 0.005, ηp

2=0.705). 

6. Experiment 5: Recognition errors in reverberation support 
causal inference 

As an additional test of the causal inference hypothesis, we assessed 
whether listeners exhibited the pattern of errors predicted by causal 
inference, tending to misidentify a low-intensity source in reverberation 
as a high-intensity source. The text responses of Experiment 4 were 
graded as in Experiment 3, with online graders judging whether the 
written responses described a sound that was louder or quieter than the 
actual sound listeners heard. Because the sounds were presented at 70 
dB SPL, the causal inference hypothesis predicts that low-intensity 
sources will be misidentified as “louder” sources (replicating the effect 
of Experiment 3). The 10 m source distance implied by the added 
reverberation should increase this effect (because increased distance 
should imply a higher-intensity source for a fixed presentation intensity 
at the ear). By contrast, high-intensity sources are less likely to be 
affected by reverberation in this way, as they are not inconsistent with 
the intensity implied by distance. 

6.1. Participants 

80 online workers participated in Experiment 5 (44 female; mean 
age = 37.2 years; SD = 16.3 years). 5 workers graded each text response 
collected in Experiment 4 (the same number used in Experiment 3). 
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6.2. Method 

Experiment 5 was identical to Experiment 3 (Fig. 3F), except that it 
was performed on the text responses from Experiment 5 (reverberation 
manipulation), rather than those of Experiment 1 (intensity 
manipulation). 

6.3. Results and discussion 

As shown in Fig. 3G, there was an overall tendency for written de-
scriptions of low-intensity sources to suggest higher-intensity sources 
than the original source labels (t-test against chance: t(15) = 49.5, p <
0.001), with no such effect for the high-intensity sources. This result 
without the added reverberation replicates the effect of Experiment 3 for 
the 70 dB condition. Moreover, as predicted by causal inference, there 
was an interaction with reverberation (F(1,15) = 28.4, P < 0.001, 
ηp

2=0.654): for low-intensity sources there was larger difference between 
the conditions with and without reverberation (t(15) = 8.95, p < 0.001, 
Cohen’s D = 2.71)), than for high-intensity sources (t(15) = 3.56, p =
0.003, Cohen’s D = 0.802). This result supports a causal inference 
interpretation of Experiment 4: it appears that reverberation increases 
perceived distance which in turn increases the inferred source intensity, 
causing systematic errors for the low-intensity sources. 

7. Experiment 6: Effect of reverberation on perceived distance in 
natural recordings 

In Experiment 4 we found that reverberation impaired recognition of 
low-intensity sources more than high-intensity sources, plausibly 
because it implies distance, and thus implies a higher-intensity source 
for a given intensity at the ear. To further assess this explanation, we 
evaluated the distance attributed to the sound sources in our stimuli. 

Measuring perceived distance seemed particularly important given 
our use of real-world recordings. The use of such recordings enabled a 
large and diverse stimulus set, but came at the cost of occasional back-
ground noise and unavoidable reverberation. As a consequence, the 
stimuli used in Experiments 1–5 all had some reverberation from the 
space in which they were recorded. At present, there is no available 
method to quantify such reverberation from a recording. However, we 
can instead assess the perceptual effect of potential reverberation by 
having participants estimate the distance of the sound sources. 

Because this experiment was quite short in duration, it was con-
ducted online. Our lab has previously found that listening experiments 
run online generally replicate data collected in the lab, qualitatively and 
quantitatively (McPherson et al., 2020; McPherson & McDermott, 2020; 
McWalter & McDermott, 2019; Woods & McDermott, 2018), provided 
steps are taken to ensure participants comply with instructions 
(McPherson & McDermott, 2020; Woods, Siegel, Traer, & McDermott, 
2017). 

7.1. Method 

7.1.1. Participants 
80 online listeners participated in Experiment 6 (36 female, 42 male, 

2 did not report; mean age = 43.2 years; SD = 10.01 years) via Amazon’s 
Mechanical Turk. We had no pilot data with which to run an a priori 
pilot analysis, but data collection was fast and inexpensive, so we ran a 
relatively large number of online participants to err on the side of being 
over-powered. All online listeners in this and other experiments in this 
paper self-reported normal hearing. All online listening tasks included a 
test at the start of the experiment to help ensure that listeners were 
wearing headphones (Woods et al., 2017). The participants analyzed 
and reported for each online experiment all passed this test. 

7.1.2. Stimuli and procedure 
The stimuli and procedure for Experiment 6 were identical to that of 

Fig. 4. Natural reverberation affects the perceived distance of the stimuli, but 
does not drive the source recognition effects from Figs. 2 and 3. (A) Schematic 
of Experiment 6: online listeners heard sounds with and without added rever-
beration and estimated the distance between the source and microphone. (B) 
Results of Experiment 6: Judged distance for sounds with and without rever-
beration, plotted separately for high- and low-intensity sources. The dashed line 
shows the distance that synthetic reverberation was designed to emulate (10 
m). For all sources, adding synthetic reverberation increased perceived dis-
tance. However, high-intensity sources were judged as more distant than low- 
intensity sources, likely due to reverberation in the original recordings. The 
dashed line shows the distance that synthetic reverberation was designed to 
emulate (10 m). (C) The distribution of distance ratings from Experiment 6 for 
“distance-matched” subsets of the stimuli. The subsets were chosen by elimi-
nating the most distant high-intensity and the least distant low-intensity sour-
ces. Data from half of the Experiment 6 participants were used to choose the 
sounds, and data from the other half are plotted here. (D-E) The results of 
Experiment 1 (D) and Experiment 4 (E) with analysis restricted to the distance- 
matched subsets. The results are similar to those for the full sets of sounds 
(shown transparent), indicating that differences in the perceived source dis-
tance between the two sets of sounds do not account for the recognition 
differences. 
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Experiment 4 (same sounds, reverberation, and balancing of classes), 
except instead of describing sounds, listeners were asked to guess the 
distance of the sound source from microphone (Fig. 4A). There were 
seven logarithmically-spaced response options: 10 cm (4 in.); 30 cm (1 
ft); 1 m (3 ft); 3 m (10 ft); 10 m (30 ft); 30 m (100 ft); 100 m (300 ft). 
Listeners were not given any other information (e.g., the source identity) 
and they were told in advance that all sounds were artificially con-
strained to have the same intensity level, such that intensity was not a 
reliable cue to distance. 

Due to the constraints of running the experiment online, we could 
not control the absolute presentation level of the stimuli, but all stimuli 
had the same rms level, and participants were instructed to adjust their 
volume setting using a calibration sound such that the experimental 
stimuli were comfortably audible. 

7.2. Results and discussion 

As shown in Fig. 4B, the added reverberation increased the perceived 
distance of the sound source in all cases, as intended, but there were also 
pronounced differences between sound categories. Specifically, high- 
intensity sources were judged to be further away than low-intensity 
sources. This likely reflects practical constraints on sound recording, 
whereby high-intensity sound sources (e.g., a truck backing up, freight 
train, etc.) must be recorded at a distance, with concomitant reverber-
ation cues in the recorded sound. By contrast, low-intensity sources are 
often recorded in quiet environments with a close microphone. Two 
other factors could also contribute. First, if listeners use knowledge of 
typical source intensities to calibrate distance judgments, high-intensity 
sources would be expected to seem further away, all other things being 
equal (as they were here, with all sounds presented at the same 

Fig. 5. Replication with studio-recorded sources with minimal reverberation. (A) Recording environment: sources were recorded in an acoustically damped sound 
booth with a 10 cm source-microphone spacing. The image shows the setup for recording a hair-dryer. (B) Example recorded sources (from top-left): chainsaw, 
hammering nails into wood, bicycle freewheeling, walking in dry leaves, chopping wood with a hatchet, chopping and peeling vegetables, sawing wood, an electric 
drill, clattering of dishes, walking on stones and sand, rustling branches, shoveling sand, wheeling a suitcase, and glass shattering. (C) Results of Experiment 7: 
Judged distance for sounds with and without reverberation broken down by whether the source intensity was low or high. (D) The distribution of distance ratings 
from Experiment 7 for two “distance-matched” subsets of the natural recordings (data that are plotted are distinct from those used to choose the subsets). (E) Results 
of Experiment 8 (source recognition of studio-recorded sources) with all data (left), distance-matched sounds (middle), and sounds matched in both distance and 
difficulty (right). The difficulty-matched sets were selected with data from half of the participants; graph shows data from the other half (hence the different sample 
size compared to the left and middle graphs). (F) Results of Experiment 9 (Loudness judgments of the written descriptions from Experiment 8. Analysis was restricted 
to the distance-matched subsets. In both E and F, the interaction effects are similar to those of the natural recordings, suggesting that the interactions in Experiments 
1–5 are not driven by contaminant reverberation. 
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intensity). Second, listeners could plausibly have learned source- 
distance associations (e.g., because high-intensity sources might be 
more often encountered at far distances) and might be influenced by 
them when estimating distance, thus judging the high-intensity sources 
to be further away irrespective of reverberation. 

The distance cues in the original recordings remained present when 
synthetic reverberation was added: the synthetic reverberation was 
designed to simulate a 10 m source-microphone separation in a large 
room, and although judged distances were in the neighborhood of this 
value (between 5 and 20 m), the high-intensity sounds were judged as 
substantially more distant than the low-intensity sounds even with 
added synthetic reverberation. 

These results are consistent with the possibility that the reverbera-
tion present in typical real-world recordings interferes with the ability to 
manipulate perceived distance with reverberation. Given this, it seemed 
important both to attempt to control for the differences in distance in 
our recordings, and to make more controlled recordings in which dis-
tance cues would be minimal (and fixed across the sounds to be 
compared). 

8. Distance-matched sound sets 

Given the variation in perceived distance across the stimuli in the 
absence of added reverberation, we sought to use “distance-matched” 
subsets of high-intensity and low-intensity sources with which we could 
test the effect of distance on source recognition in a more controlled 
manner. From the original sets of sounds used in Experiments 4–6, the 
most distant high-intensity source and the least distant low-intensity 
source were iteratively excluded until the distributions overlapped (i. 

e., until the difference in the mean rated distance for the two groups was 
less than 0.1 on the 1–7 scale used in the rating, corresponding to a 
distance ratio of d1

d2
≤ 100.1 ≈ 1.26 of the two mean distance ratings, d1 

and d2). This selection procedure was performed using data from half the 
participants of Experiment 6 (N = 40). To verify the success of the 
procedure, we used the data from the other half of participants to 
measure the average perceived distance of the resulting groups of 
sounds (Fig. 4C)). This yielded distance-matched subsets of 26 high- and 
26 low-intensity sounds (Table S1). 

The distribution of distance ratings for these subsets of recordings are 
shown in Fig. 4C, with and without synthetic reverberation. Without 
added reverberation, the rated distance was matched across source 
types, as intended. With synthetic reverberation, perceived distance 
increased, as intended, and to a similar extent across source types. 
Moreover, distance ratings with the added reverberation were close to 
10 m, demonstrating a reasonable quantitative match between intended 
and perceived distance. These results indicate that we achieved the 
desired manipulation of perceived distance. 

To assess whether the key results were robust to the incidental dis-
tance cues present in the sound recordings, we replotted the results of 
Experiments 1 and 4 including only the distance-matched subsets 
(Fig. 4D-E). As we found with the full set of sounds, source-recognition 
was impaired when low-intensity sources were presented at high in-
tensities (again producing a significant interaction: F(2,82) = 4.09; p =
0.020; ηp

2=0.091; because the number of sounds was reduced we binned 
the presentation intensity groups into three bins (less than 50 dB; 
50—70 dB; greater than 70 dB) to ensure all participants encountered at 
least 3 sounds per condition (average of 7.4)). Source recognition for 
low-intensity sources was also impaired by reverberation, again pro-
ducing a significant interaction (F(1,15) = 16.0, p = 0.001, ηp

2=0.516). 
These results suggest that the variation in apparent source distances 
present in the original stimulus set cannot explain the different effects of 
intensity at the ear and reverberation on the recognition of high- and 
low-intensity sound sources. 

9. Studio recordings with controlled reverberation 

Although our main results were reproduced with distance-matched 
subsets of sounds (Fig. 4), the distance ratings (Experiment 6) showed 
large and systematic differences between the perceived distance of 
different types of sound, probably due to differences in reverberation 
contaminating the original recordings. Given that the results of Exper-
iments 4 and 5 suggest that reverberation affects source recognition, we 
sought to replicate our main findings with an additional set of sounds 
recorded in a soundproof studio to minimize reverberation (see Ap-
pendix D). The studio had damped walls and we used a fixed small (10 
cm) source-microphone distance (Fig. 5A). The sound sources were 
chosen to span different source intensities (15 each of high- and low- 
intensity sources; see Table 3 and Fig. 5B) and to include both indoor 
and outdoor sound sources, as this distinction was important for 
Experiment 11. In addition to recording the sound we measured its 
sound pressure level at the microphone, using a sound level meter. These 
controlled recordings allowed us to more carefully test the effect of 
reverberation on perceived source distance (Experiment 7) and source 
recognition (Experiments 8 and 9). 

10. Experiment 7: Effect of reverberation on perceived distance 
of studio-recorded sources 

To test the effect of added reverberation on perceived source distance 
for our studio-recorded sounds, we repeated Experiment 6 (distance 
estimation) but with the new set of recorded sounds (Fig. 6C). 

Table 3 
Sounds recorded in a studio with minimal reverberation. The sound level (in dB 
SPL) as measured 10 cm from each source is given in parentheses. In compari-
sons of high-intensity vs. low-intensity sources (Fig. 5) the 15 sounds from the 
left- and right-columns are used. In comparisons of indoor vs. outdoor sources 
(Fig. 6) the 15 sounds from the top and bottom rows are used. The Medium- 
Intensity sources marked with an asterisk or dagger were classed as high- or 
low-intensity sources, respectively, in the analyses shown in Fig. 6 to increase 
the pool of sources.   

Low-Intensity (<64 
dB) 

Medium-Intensity (64- 
82 dB) 

High-Intensity (>82 
dB) 

Indoor Scissors (62) 
Chopping 
vegetables (60) 
Peeling vegetables 
(59) 
Pepper Grinder (56) 
Typing (42) 

Clanking dishes* (78) 
Stapler* (75) 
Boiling kettle* (74) 
Electric shaver (72) 
Crumpling paper+ (69) 

Vacuum (95) 
Hair dryer (92) 
Blender (88) 
Coffee-bean grinder 
(88) 
Electric can opener 
(83)  

Either Pouring liquid (59) 
Hands rubbing (59) 
Zipper (58) 
Biting into an apple 
(57) 
Suitcase rolling (52)  

Hammering metal 
(112) 
Glass smashing 
(102) 
Drill (101) 
Hammering a nail 
(97) 
Spray can spraying 
(95)  

Outdoor Shoveling sand (59) 
Splashing water 
(57) 
Footsteps in sand 
(55) 
Branch trimmer (53) 
Rustling branch (52) 

Hatchet striking a log* 
(78) 
Spray can shaking* 
(76) 
Bicycle freewheeling 
(72) 
Footsteps (pebbles)+

(69) 
Footsteps (dry-leaves)+

(69) 

Lawnmower (119) 
Leaf blower (114) 
Chainsaw (113) 
Stones clattering 
(92) 
Bicycle bell (92)  
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10.1. Method 

10.1.1. Participants 
160 online listeners participated in Experiment 7 (92 female, 7 did 

not report; mean age = 29.4 years; SD = 9.00 years). We ran twice as 
many participants as in Experiment 6 (192 sounds), because there were 
fewer sounds in this experiment (45 studio recordings, along with 72 
natural recordings as controls to ensure performance was comparable to 
that of in-lab participants). 

10.1.2. Stimuli and procedure 
The experiment was identical to Experiment 6 except that the natural 

recordings (Table 1) were replaced with a set of studio recordings 
(Table 3), with a sampling rate of 44.1 kHz and a bit depth of 24. 

10.2. Results and discussion 

As expected, the studio recordings (before synthetic reverberation 
was added) were rated overall as less distant than the natural sound 
sources of Experiments 1–6 (2.84 m vs. 4.86 m, on average). And as 
intended, the synthetic reverberation increased distance judgments to 
approximately 10 m. In addition, the difference in perceived distance 
between high- vs. low-intensity sources without added reverberation 
was much smaller for the studio recordings than for the natural re-
cordings used in Experiment 6 (1.80 m vs. 6.27 m). This difference 
suggests that the large differences between the source types in Experi-
ment 6 were in part driven by reverberation in the natural recordings. 
However, high-intensity sources were nonetheless rated as more distant 
than low-intensity sources (t(159) = 5.19, p < 0.001, paired t-test). 
Moreover, the distance estimates without added reverberation consis-
tently exceeded the actual source-microphone distance of 10 cm (t(159) 
= 66.4; p < 0.001, t-test vs. 10 cm). These differences suggest a role for 
the additional factors noted earlier. Given that the sounds were all 
presented at the same intensity, distance could be calibrated by 
knowledge of typical source intensities, causing high-intensity sources 
to seem further away. Alternatively, the difference between high- and 
low-intensity sources could reflect learned source-specific priors on 
distance. 

Overall, these results indicate that the distance manipulation largely 
works as expected when applied to recordings with minimal reverber-
ation. But given that there were still small differences in rated distance 

(caption on next column) 

Fig. 6. Interactions between reverberation and typical source location support 
causal inference. (A) Typical frequency-dependent reverberation times (RT60) 
for indoor and outdoor spaces, measured with a 2 m source-microphone sep-
aration. Measurements were obtained in a survey of ecological reverberation 
(data replotted from Traer & McDermott, 2016) and the three lines for each 
location group show the 25th, 50th, and 75th percentiles of RT60 at different 
frequencies. Thus, for equivalent source-listener distances, indoor sounds would 
be more commonly encountered with reverberation than outdoor. (B) Sche-
matic of the task used in Experiments 10 and 11, in which participants judged 
the typicality of a sound’s audible environment with and without application of 
synthetic reverberation, for natural recordings (Experiment 10) or studio re-
cordings (Experiment 11). (C) The results of Experiments 10 and 11: low- 
intensity outdoor sources suffered a greater decrement in rated typicality of 
their environment when reverberation was applied than low-intensity indoor 
sources. The difference between indoor and outdoor sounds was not observed 
for high-intensity sounds, plausibly because loud sources can be heard from 
great distances, and over a large enough distance outdoor environments can 
exhibit significant reverberation. (D) Results of Experiments 4 and 8 (source 
recognition) with the results plotted separately for indoor and outdoor sources. 
There is no evidence that reverberation impairs recognition more for low- 
intensity outdoor sources than low-intensity indoor sources, despite the dif-
ference in the appropriateness of the reverberation observed in Experiments 10 
and 11. This suggests that misidentification of sources is not being driven by the 
atypicality of the reverberation, but rather is caused by the physical implausi-
bility of a reverberant low-intensity source. 
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between the different sound classes before reverberation was added, we 
ran the distance matching procedure again, yielding subsets of 13 high- 
and low-intensity sounds (Fig. 5D; Table S3). 

11. Experiments 8 and 9: effect of reverberation on recognition 
of studio-recorded sources 

To confirm the source-recognition results of Experiments 4–5, we 
replicated both experiments with the distance-matched subsets of 
studio-recordings. Because the set of studio recordings was much 
smaller than the set of natural recordings, Experiment 8 was run online 
to obtain a large number of participants and thus sufficient power. 

11.1. Method 

11.1.1. Participants 
72 online listeners participated in Experiment 8 (37 female, 34 male, 

1 did not report; mean age = 31.25; SD = 14.28). Pilot experiment data 
(not included in the results here) suggested an interaction with effect 
size of ηp

2=0.109. A power analysis indicated that 67 participants were 
needed to detect an effect of this size 80% of the time using a signifi-
cance threshold of 0.05. 

360 online workers participated in Experiment 9 (174 female, 8 did 
not report; mean age = 33.2 years; SD = 16.8 years). This number 
resulted in 5 workers grading each text response of Experiment 8, the 
same number as in Experiments 3 and 5. 

11.1.2. Materials and procedure 
Experiments 8 and 9 were identical to Experiments 4 and 5, except 

that studio-recorded sources were used instead of natural recordings. 
See Table S2 for a list of distance-matched studio-recordings. The 
grading procedure was also identical to that used in Experiments 4 and 
5. 

11.2. Results and discussion 

As shown in Fig. 5E (left), recognition was again worse overall in 
reverberation, as expected given the substantial distortion imposed by 
the reverberation (main effect of reverberation: F(1,71) = 48.44, P <
0.001, ηp

2=0.406). However, the effect of the reverberation was less 
pronounced for high-intensity sources, producing a significant interac-
tion between reverberation and source intensity (F(1,71) = 8.85, p =
0.004, ηp

2=0.111), replicating the effect observed in Experiment 4. The 
interaction persisted when the analysis was restricted to distance- 
matched subsets of sounds (Fig. 5E, middle): F(1,71) = 7.74, p =
0.007, ηp2=0.098. 

The lower overall performance for the studio recordings compared to 
the natural recordings appears to reflect idiosyncrasies of the set of 
sources (chosen based on practical constraints of being able to record 
them in a small studio). It could in principle reflect differences between 
in-lab and online performance, but the online participants also per-
formed a small number of “sanity-check” trials with a subset of the 
natural recordings. For these trials, their overall mean performance was 
71%, which was comparable to that of the in-lab participants (69%). 
This suggests the studio recordings are intrinsically more difficult to 
recognize and describe than the natural recordings. We note that the low 
recognition rates are still well above chance (10%). 

It was also the case that the high-intensity studio sources were 
overall more recognizable than the low-intensity studio sources. To 
control for this difference we selected subsets of 8 high- and 8 low- 
intensity sources that were matched for both recognizability and dis-
tance without reverberation. The difficulty-matched sources were 
selected using the data from half the participants and the data from the 
other half is plotted in 4E. Because of the small number of stimuli, it was 
not possible to perfectly equate recognizability in this way, but the 
difference between conditions was substantially reduced compared to 

the main analysis. These difficulty-matched subsets still showed a sig-
nificant interaction between source intensity and reverberation (F(1,35) 
= 5.43, p = 0.026, ηp

2=0.134). 
Experiment 9 replicated Experiment 5 but with the descriptions of 

the distance-matched subset of studio recordings. As shown in Fig. 5F, 
there was an overall tendency for the written descriptions of low- 
intensity sources to suggest higher-intensity sources than the original 
source labels. However, there was an interaction between source in-
tensity and reverberation (F(1,35) = 9.19, p = 0.005, ηp

2=0.208), with a 
larger effect of reverberation on low-intensity sources than high- 
intensity sources. This result replicates the effects observed in Experi-
ment 5 and again provides further support for the causal inference 
interpretation. 

12. Causal inference vs. Acoustic familiarity 

The results of Experiments 1–9 are inconsistent with the invariance 
hypothesis, and are consistent with the idea that listeners use inferred 
source intensity as a recognition cue. We refer to this possibility as 
causal inference. However, the key result – that low-intensity sources 
are misidentified when presented at unusually high-intensities or dis-
tances – is consistent with at least one other hypothesis: that recognition 
is constrained by whether a listener has previously heard a source in the 
presentation conditions (as might be expected if listeners learn a set of 
templates of their previous sensory experience, and recognize sounds via 
matches with these templates). The causal inference hypothesis could 
explain the results given that neither high-intensity nor reverberant 
sounds could be caused by a low-intensity source. The acoustic famil-
iarity hypothesis could also explain the results because low-intensity 
sources would never be encountered as such in natural scenes. 

To distinguish these two hypotheses, we reanalyzed the data from 
the source-recognition experiments in reverberation (Experiments 4 and 
8) and compared the effect of reverberation on recognition of sources 
typically encountered outdoors against those typically encountered in-
doors. Although extremely distant outdoor sources can be very rever-
berant (e.g., thunder, fireworks, or distant gunshots), it is plausible that 
for sounds of moderate intensity, which are only audible at moderate 
distances, outdoor scenes would yield shorter reverberation decay times 
than indoor scenes, as shown for empirical measurements in Fig. 6A 
(data from (Traer & McDermott, 2016)). The shorter decay times reduce 
the overall amount of reverberant sound energy in the signal reaching 
the ears, all other things being equal. Under the acoustic familiarity 
hypothesis, low-intensity outdoor sounds should be more often mis-
identified than low-intensity indoor sounds when our synthetic rever-
beration is applied, whereas under the causal inference hypothesis, there 
should be no difference. 

13. Experiments 10 and 11: reverberation is unnatural for 
outdoor sources 

Before re-analyzing the recognition results, we conducted an 
experiment to test whether added reverberation would be heard as “less 
typical” for outdoor compared to indoor sound sources, and thus test the 
key assumption motivating the re-analysis (Fig. 6A). As with Experi-
ments 6 and 7, this experiment was short in duration and was thus 
conducted online. Participants were presented with an audio recording 
and its label, and were asked to rate, on a scale from 1 to 5, how typical 
the environment seemed for the named sound source. Participants heard 
each sound only once, with half the sounds presented unaltered and the 
other half with added synthetic reverberation. The reverberation had a 
direct-to-reverberant ratio (DRR) appropriate for a 10 m distance, and a 
long decay time (RT60) appropriate for a large room, as in Experiment 4. 
Under the assumption that outdoor spaces do not exhibit such long 
RT60s, as has been demonstrated for nearby sources (Traer & McDer-
mott, 2016), this reverberation is inappropriate for outdoor sounds. 
Experiment 10 used the natural recordings of Experiments 1–6, while 
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Experiment 11 used the studio recordings of Experiment 7–9. We 
separately analyzed the results for high- and low-intensity sources 
because the assumption that the synthetic reverberation is incongruous 
with outdoor scenes is less obviously justified for distant sources, which 
must necessarily be high-intensity. 

13.1. Methods 

13.1.1. Participants 
80 online listeners participated in Experiment 10 (43 female, 36 

male, 1 did not report; mean age = 28.2 years; SD = 15.43 years). 240 
online listeners participated in Experiment 11 (111 female, 122 male, 7 
did not report; mean age = 32.2 years; SD = 12.09 years). As with Ex-
periments 5 and 6, we had no pilot data for an a priori power analysis 
but the experiment was fast and inexpensive, and so a large number of 
participants were run to err on the side of being over- rather than under- 
powered. More participants were run in Experiment 11 because the 
experiment contained fewer sounds than Experiment 10. 

13.1.2. Stimuli and procedure 
The sound set in Experiment 10 was the distance-matched set of 

natural recordings, with each source categorized as indoor/outdoor as 

well as high−/low-intensity (Table S3; Appendix C). The sound set in 
Experiment 11 comprised the distance-matched indoor and outdoor 
studio-recordings (Table S4). 

In both experiments, each listener heard each sound once, presented 
either with or without reverberation. The reverberation conditions were 
balanced across listeners, such that while each listener only heard each 
sound once, each source was equally likely to be presented reverberant 
or anechoic. 

Listeners were shown the name of each source and were given the 
following instructions: 

How “typical” does the space sound for this sound source? Would you 
expect the listed sound to sound like this? Or does it seem like the source was 
recorded in an atypical place? Rate on a scale from 1 (least typical) to 5 
(most typical). 

13.2. Results and discussion 

As shown in Fig. 6C, the results differed for high-and low-intensity 
sources. Low-intensity sources with added reverberation showed the 
expected interaction. The sounds were overall heard as less natural in 
reverberation, but the rated typicality decreased more for outdoor than 
indoor sounds, as predicted, producing a significant interaction between 

Fig. 7. Source recognition effects from Figs. 2 and 3 are not driven by differences in standard acoustic features. (A) The average spectral power distribution for low- 
intensity and high-intensity sources, measured using a Gammatone filter bank model of cochlear responses. We computed the envelope of each frequency band, 
converted the envelopes to a dB scale, averaged across time, and averaged across the sounds from each source intensity group. The graph plots the mean and standard 
deviation for each frequency band across the sounds from each group. (B) The strength of temporal and spectral modulations for sounds from each intensity group. 
Spectrotemporal modulations were computed by convolving a cochleagram with filters tuned to different rates of spectral/temporal modulation. Here we plot 
standard deviation of the filter responses over time, averaged across audio frequency. (C) To ensure that the differences in the spectral power distribution for low- 
intensity and high-intensity sources could not explain the differences in the effect of presentation intensity on their recognition, we selected a subset of 50 sounds 
from each group with closely matched excitation patterns. The graph plots the mean and standard deviation for each frequency band for these subsets. Note that the 
curves match well enough (as desired) that the blue curve is obscured by the red curve. (D&E) Results of Experiment 1 and Experiment 4 for subsets of low-intensity 
and high-intensity sources approximately equated for their spectral power distribution. The results are similar to those for the full sets of sounds (shown transparent), 
indicating that differences in the excitation patterns between the two sets of sounds do not account for the recognition differences. (For interpretation of the ref-
erences to colour in this figure legend, the reader is referred to the web version of this article.) 
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sound class and reverberation for both experiments (Experiment 10, 
natural-recordings: F(1,79) = 11.9; P = 0.001; ηp

2=0.131; Experiment 
11, studio-recordings: F(1,239) = 7.06, P = 0.008, ηp

2=0.029). These 
effects were not observed for high-intensity sounds, which were rated as 
about equally typical with or without reverberation for both indoor and 
outdoor sources (no significant effect of reverberation in Experiment 10, 
natural-recordings: F(1,79) = 0.087; P = 0.366; ηp

2=0.011; no significant 
interaction in Experiment 11, studio-recordings: F(1,239) = 0.580, P =
0.580, ηp

2=0.002). One explanation is that outdoor environments can 
exhibit substantial reverberant energy provided a source is sufficiently 
high-intensity and far away (e.g., a jack-hammer heard from a neigh-
boring street through a window) (Padgham, 2004; Wiener, Malme, & 
Gogos, 1965). Our reverberation had a decay time that was atypical for 
nearby sources (e.g., several meters away) in outdoor spaces (Traer & 
McDermott, 2016), but the reverberation of distant sources in outdoor 
spaces (Knudsen, 1946) is less well characterized and it is possible that 
our reverberation is consistent with sufficiently distant sources in out-
door spaces. 

Overall, these results provide support for the idea that listeners have 
some degree of implicit knowledge of the reverberation that is typical 
for a sound source, such that low-intensity sources can be divided into 
subsets of outdoor and indoor recordings that might be used to distin-
guish familiarity-based recognition from causal inference. For low- 
intensity sounds, which are only audible when close, reverberation is 
less commonly associated with outdoor than indoor sounds, even though 
it is no less physically possible. 

14. Sound recognition results (Experiments 4 and 8) support 
causal inference 

When reanalyzed separately for typically indoor and outdoor sounds, 
the results from Experiments 4 and 8 showed no evidence that low- 
intensity outdoor sounds were misidentified more in reverberation 
than indoor sounds (Fig. 6C; Experiment 4, natural-recordings (Table 
S3): F(1,15) = 0.127, p = 0.727, ηp

2=0.008; Experiment 8, studio-re-
cordings (Table S4) showed a significant interaction in the opposite 
direction: F(1,71) = 4.22, p = 0.044, ηp

2=0.056), even though the 
reverberation we applied was heard as more atypical for the outdoor 
than indoor sounds in Experiments 10–11. There was also no interaction 
for the high-intensity sources (Experiment 4, natural-recordings: F 
(1,15) = 0.115, p = 0.739, ηp

2=0.008; Experiment 8, studio-recordings: F 
(1,71) = 1.97, p = 0.164, ηp

2=0.027), though none was expected given 
the results of Experiments 10 and 11. 

Overall, these results are consistent with the idea that humans are 
using implicit causal inference to interpret and identify sources, with the 
distance cue from reverberation being used to infer source intensity, 
which then influences recognition judgments. 

15. Evidence for causal inference is robust to variations in 
choice of sound sources 

Here, and in Section 16, we present additional analyses and a control 
experiment to address various alternative explanations of our key 
results. 

Fig. 8. Audibility does not explain intensity-dependent recognition. (A) Illustration of the effect of overall sound intensity on audibility, and the use of masking noise to 
create stimuli with equal audibility profiles across different intensities. Each panel plots the maximum energy across time in each of a set of frequency channels 
(computed using a Gammatone filter bank model of cochlear responses) for a natural sound (“crumpling paper”) presented at two different overall intensities. 
Frequency-dependent audibility thresholds are plotted for comparison. At low intensities (left), some frequencies are below threshold. At high sound intensities 
(middle), these frequencies become audible. Such frequencies are presumably rarely heard for low-intensity sources, and could in principle interfere with their 
recognition when they become audible at high presentation intensities. Masking noise was used to keep these frequencies from becoming audible by elevating the 
threshold of audibility (right) (see Fig. S2). We note that the filtering of the cochlea is dependent on level, with bandwidths becoming somewhat broader with level 
(Glasberg and Moore, 2000), such that the excitation pattern at high levels is not simply a translated copy of the excitation pattern at low levels. However, we 
confirmed that the masking noise had the intended effect in a control experiment shown in Supplementary Fig. S4, indicating that the assumption of a constant 
excitation pattern was sufficient to derive masking noise that had the intended effect. (B) The effect of masking noise on the recognition of low-intensity and high- 
intensity sources (same task as Experiment 1). Error bars show one standard error of the mean across subjects. The noise had no significant effect on the recogni-
tion of low-intensity sources, suggesting that audibility of normally inaudible frequencies was not the cause of their poor recognition at high presentation intensities. 
The noise impaired recognition of high-intensity sources, presumably due to the masking of frequencies that are often heard in daily life. 
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We first examined whether the different results for the two groups of 
sources could be explained by differences in standard acoustic properties 
(see Appendix E for more details). For each sound, we computed a 
“cochleagram”, which is similar to a spectrogram but is computed using 
a filter bank designed to mimic cochlear frequency tuning. We then 
compared the average spectral power distribution from this filter bank 
(Fig. 7A) (also known as the excitation pattern, obtained by averaging 
the cochleagram across time) as well as the power in a set of modulation 
filters that measure the strength of fluctuations in the cochleagram 
across time and frequency (Fig. 7B) (Chi, Ru, & Shamma, 2005; Singh & 
Theunissen, 2003). 

We found that low-intensity and high-intensity sources had fairly 
similar modulation spectra, but that there were differences in the 
average excitation pattern, plausibly due to greater reverberation in the 
high-intensity sources, which tends to enhance mid-frequencies (Traer & 
McDermott, 2016). However, the interaction between presentation in-
tensity and source intensity persisted for subsets of low- and high- 
intensity sources selected to yield matched average excitation patterns 
(Fig. 7C&D; F(6, 246) = 6.15; p < 0.001;ηp

2=0.130) (matching was 
performed by greedily discarding sounds so as to minimize differences in 
the excitation pattern). The interaction between reverberation and 
source intensity also persisted for the sound subsets matched in average 
excitation patterns (Fig. 7E; F(1, 15) = 81.7; p < 0.001;ηp

2=0.845). In 
addition, we ensured that our sound presentation system was linear over 
the range of intensities we presented, such that the results are unlikely to 
reflect distortion of sounds at high intensities. The results thus seem 
unlikely to reflect acoustic differences in the sounds tested. 

16. Experiment 12: sound recognition results are not driven by 
audibility 

For low-intensity sources, many of the constituent frequencies may 
be inaudible in real-world listening conditions (Fig. 8A). If a recording of 
a low-intensity source is presented at a high intensity these frequencies 
may become audible and could potentially interfere with recognition by 
creating an unfamiliar acoustic profile. To test whether the unmasking 
of typically inaudible frequencies could explain our results, we used 
masking noise to prevent sound elements that were inaudible at low 
intensities from becoming audible at high intensities (Fig. 8A). 

Experiment 12 was similar to Experiment 1 except that each sound 
was presented with and without masking noise. Sounds were presented 
at one of 6 intensities (40, 50, 60, 70, 80, and 90 dB SPL). Unlike in 
Experiment 1, we did not present sounds at 30 dB because performance 
was poor for both classes of sounds in this condition of Experiment 1. 
The masking noise was designed such that sound components that would 
normally be inaudible at 40 dB would remain inaudible at higher in-
tensities (Fig. 8A). We confirmed that the masking noise had the 
intended effect in a supplementary experiment (described in the Ap-
pendix F). 

16.1. Method 

Experiment 12 was similar to Experiment 1 except that half of the 
trials included background noise designed to mask frequencies that were 
inaudible at the lowest presentation level. All other differences between 
the experiments are noted below. 

16.1.1. Participants 
72 in-lab listeners participated in the experiment (44 female; mean 

age = 25.0, SD = 5.9) and had pure tone detection thresholds at or below 
30 dB HL at all frequencies tested. 

16.1.2. Procedure 
Each listener was presented with each of the 300 sounds once, at one 

of six presentation intensities (40, 50, 60, 70, 80, or 90 dB SPL) and 
either with or without masking noise. Across the 72 in-lab listeners, each 
sound was presented an equal number of times at each intensity (as in 
Experiment 1) and in each of the two noise conditions (with and 
without). The 21,600 descriptions provided by these 72 listeners (72 ×
300 trials) were scored by 923 Mechanical Turk workers, each of whom 
scored 50 descriptions. As a consequence, most descriptions were scored 
by approximately two workers as in Experiment 1. The pattern of mean 
recognition performance across all conditions was again stable across 
independent sets of Mechanical Turk scorings (split-half Pearson cor-
relation was 0.96). 

16.1.3. Masking noise 
The goal of the noise was to elevate the threshold of audibility such 

that frequencies that would be inaudible in quiet when sounds were 
presented at 40 dB (the lowest intensity condition in the experiment) 
would remain so at higher presentation intensities (see Fig. S2 for a 
schematic). We adapted threshold equalizing noise (TEN) (Moore, Huss, 
Vickers, Glasberg, & Alcántara, 2000), which equalizes the threshold of 
audibility for all frequencies (Fig. S2, middle panel). In our case, we 
wanted to elevate the threshold of audibility but maintain its depen-
dence on frequency, and thus we shaped the spectrum of threshold- 
equalizing noise by the audibility threshold contour in quiet (Glasberg 
& Moore, 2006). The spectral shaping was accomplished in the fre-
quency domain (using FFT/iFFT, interpolating the audibility contour to 
the grid of values sampled by the FFT, and multiplying the noise spec-
trum by the interpolated audibility contour). The overall level of the 
masking noise was set such that the resulting audibility threshold was 
(X-40) dB above the audibility threshold in quiet, where X is the overall 
intensity level of the stimulus. For the 40 dB condition, we would expect 
the noise to have little to no effect on audibility (although the noise itself 
was audible), and indeed the noise had no significant effect on perfor-
mance in our discrimination task at this sound intensity (Fig. 8B; Fig. S3; 
F(1, 71) = 0.09, p = 0.76). The effect of the masking noise was further 
validated in Experiment S1. 

The noise had power between 50 Hz and 10 kHz (the Nyquist limit). 
We attenuated (by 60 dB) frequencies in the natural sounds that fell 
below the lower frequency cutoff of the noise. This attenuation was 
implemented in the frequency domain (using the FFT/iFFT), and we 
used a gradual roll-off rather than a sharp cutoff at 50 Hz to avoid un-
wanted time-domain effects (implemented by smoothing the ideal step 
filter with a Gaussian on a logarithmic frequency scale; FWHM = 0.1 
octaves). 

16.1.4. Stimulus Spectrum 
In all other in-lab experiments (Experiments 1, 2, and 4), we used the 

audio transfer function of the headphones to adjust sound waveforms to 
have the desired overall level at the eardrum, but we did not otherwise 
compensate for the transfer function of the sound presentation system (i. 
e., so that the level of each frequency at the eardrum would correspond 
to its level in the recording). In Experiment 12 (and Experiment S1), we 
filtered the natural sounds and the masking noise in the frequency 
domain so that the power spectrum at the eardrum would match that of 
the original sound waveform. In practice, we found that the filtered 
natural sounds were perceptually very similar to the unfiltered natural 
sounds, and we observed similar effects of stimulus intensity in the 
absence of masking noise, suggesting that compensating for the system 
transfer function is not critical. 
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16.2. Results and discussion 

In the absence of masking noise, we replicated our findings from 
Experiment 1 (Fig. 8B, solid lines). Recognition of high-intensity sources 
was good at moderate to high presentation intensities, while recognition 
of low-intensity sources declined at high presentation intensities, lead-
ing to an interaction between source intensity and presentation intensity 
(F(5, 355) = 4.70; p < 0.001;ηp

2=0.062). If poor performance for low- 
intensity sources at high presentation intensities was due to unmask-
ing of frequencies that are normally inaudible, then we would expect 
masking noise to eliminate this impairment. Alternatively, if the 
impairment reflects the inference of the source intensity, the masking 
noise should have little effect, as the overall sound intensity is what 
should matter. Under either account, it seemed plausible that the 
masking noise would impair performance for typically loud sources 
because the noise masks frequencies that, for high-intensity sources, are 
normally heard and could be used to aid recognition. 

As shown in Fig. 8B (dashed lines), there was no significant effect of 
the masking noise for low-intensity sources (F(1, 71) = 0.33; p = 0.57; 
ηp

2=0.002), indicating that the recognition impairments we observe are 
not driven by audibility of normally inaudible sound components. By 
contrast, there was a small decrement in overall performance for high- 
intensity sources when masking noise was present (F(1, 71) = 20.00; 
p < 0.001; ηp

2=0.057; we observed intermediate results for sources with 
intermediate typical intensities; Fig. S3). As a consequence, the inter-
action between source intensity and presentation intensity remained 
even with the masking noise (F(5, 355) = 2.25; p < 0.05; ηp

2=0.031). 
Thus, our findings suggest that the unmasking of inaudible frequencies 
cannot explain our results. 

17. General discussion 

A hallmark of human recognition is its robustness to the substantial 
acoustic variation created by different real-world environments. As a 
case study of how human listeners achieve robust recognition, we 
measured the extent to which recognition is invariant to sound intensity 
and reverberation, two variables that could plausibly be separated from 
the representation of a sound’s identity. A first set of experiments sug-
gested that humans are not invariant to intensity (Experiments 1–3; 
Fig. 2). Sounds that do not normally occur at high intensities were often 
misidentified when presented at high intensities. This basic result 
replicated across several different experiments and could not be 
explained by simple acoustic features (Fig. 7) nor by changes in the 
audible frequency content of the sounds (Experiment 12; Fig. 8). 

A second set of experiments revealed that reverberation implying a 
distant source had a similar effect on human recognition as high pre-
sentation intensity (Experiments 4–9; Figs. 3, 4 and 5). Low-intensity 
sources were misidentified in reverberation, while recognition of high- 
intensity sources was relatively robust. However, these failures of 
invariance were systematic: most errors were due to listeners mistakenly 
identifying low-intensity sources as high-intensity sources. By contrast, 
there was no evidence that sounds were misidentified more when pre-
sented with reverberation implying an atypical location for the source (i. 
e., when typically outdoor sources were convolved with reverberation 
typical of indoor spaces; Experiments 10&11, Fig. 6). Collectively the 
results indicate that sound recognition is not invariant to intensity or 
reverberation. Instead, the results are consistent with intuitive causal 
inference, in which the intensity of a sound source is implicitly inferred 
and used to constrain recognition judgments. Although not producing 
invariance across arbitrary stimulus manipulations of intensity or 

reverberation, this strategy likely aids accurate recognition in everyday 
settings, in which observed sounds must be physically consistent with 
their sources in the world. 

We note that the experimental conditions were intended to maximize 
the chances of observing invariance. In experiments manipulating pre-
sentation intensity (i.e., Experiments 1, 2 and 12), listeners were told 
that sounds would be presented over a wide range of intensities, and in 
reverberation experiments (i.e., Experiments 4, 6–11), listeners were 
told that levels were artificially normalized, such that listeners should 
have been maximally inclined to benefit from any invariance mecha-
nisms, and from decision strategies that accounted for the unrealistic 
presentation intensities. The fact that listeners were informed of the 
experimental design, and then experienced a wide range of intensities 
during the experiment (for Experiments 1, 2, and 12) makes it unlikely 
that listeners mistakenly assumed that sounds were played at veridical 
intensities, such that their mistakes reflect a counterproductive decision 
strategy. If anything, the effects we documented may have been weak-
ened as a consequence of listeners’ knowledge of the experiment 
structure. One might also expect listeners to be somewhat adapted to 
variation in presentation intensities due to the common presence of 
electrical audio amplification in modern listening conditions, where 
playback levels of radios, televisions and other devices are independent 
of lawful physical relations related to a scene in the world. Such adap-
tation would also have weakened the effects described here. The dif-
ferences we observed between low-intensity and high-intensity sources 
also do not appear to be due to differences in recording conditions 
(Fig. 4D,E). 

17.1. Prior work on invariance 

Prior work suggests several reasons why listeners might be invariant 
to intensity. Gain control mechanisms exist as early as the cochlea 
(Darrow, Maison, & Liberman, 2006; Guinan, 2006) and midbrain 
(Dean, Harper, & McAlpine, 2005) that partially attenuate the effects of 
sound intensity. Moreover, mechanisms for level-invariant representa-
tion have been proposed at the level of the cortex in non-human animals 
(Billimoria et al., 2008; Sadagopan & Wang, 2008). In addition, many 
sounds occur over a wide range of levels in everyday experience 
(because we encounter them at a range of distances, or because the 
source can vary in physical intensity), such that a general normalization 
mechanism might be expected to emerge during auditory development. 
The fact that recognition is nonetheless influenced by cues to a source’s 
intensity is thus suggestive that inferred physical variables figure 
prominently in environmental sound recognition. 

17.2. Limitations 

The use of real-world sounds increases the relevance of our results for 
everyday hearing, but also presents methodological challenges (Shafiro, 
2008; Shafiro & Gygi, 2004). Many real-world sound sources cannot 
practically be recorded in an anechoic environment (e.g., plane taking 
off, shower, truck, crowd cheering, gunshots, stream, traffic, rain, etc.), 
and are thus inevitably “contaminated” with reverberation and back-
ground noise. We dealt with this issue by using two sets of sounds: a 
large and diverse set of natural recordings, and a set of controlled studio 
recordings that was necessarily more limited in size and scope. 

The uncontrolled reverberation in the natural set is likely to have 
affected listeners’ distance judgments (Experiment 5) and interfered 
with the use of added reverberation to manipulate distance. We were 
able to partially mitigate this by using distance-matched subsets of 
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sources, and by replicating the results of some experiments using studio 
recordings. The similar effects evident across both sound sets suggest 
that our main results are robust to the reverberation originally present in 
the natural recordings (once equated for distance) and to the idiosyn-
crasies of the particular sounds in our studio recording set. 

The studio recordings were limited by practical constraints. Many 
high-intensity and outdoor sounds were impossible to record, and many 
sounds we did record nonetheless entailed practical difficulties (e.g., 
chainsaw, lawnmower, chopping wood, walking on sand, shoveling, 
glass smashing). We were pleased to complete these recordings while 
avoiding damage to life or limb, or to our sound booth. 

The studio recordings all had similarly minimal reverberation, but 
nonetheless produced variation in rated distance. This variation pre-
sumably reflects the influence of source knowledge, demonstrating 
another challenge of using recognizable sounds for which listeners have 
expectations and prior knowledge. We controlled for these effects again 
by using distance-matched subsets of sounds. 

Another challenge was that we could not obtain measurements of the 
intensities with which most real-world sounds are encountered in the 
world. In lieu of this we had humans rate whether sounds were typically 
soft or loud. These ratings are surely not perfectly reflective of actual 
source intensities. However, our analyses relied on very coarse divisions 
of sounds based on these ratings (e.g., into the loudest and quietest 
sources), and it seems likely that these divisions indeed capture sub-
stantial differences in source intensity. Moreover, we replicated our 
results using studio recordings where the true source intensities were 
known. 

Similar issues were present for reverberation, where we asked 
humans to rate whether sounds are typically encountered indoors or 
outdoors in lieu of measuring reverberation. Typical outdoor environ-
ments have much less reverberation (i.e., shorter RT60s) than typical 
indoor spaces when source-listener distance is moderate (i.e., several 
meters) (Traer & McDermott, 2016). However, extremely high-intensity 
sources can be heard over kilometer-scales (e.g., thunder, gunshots, 
helicopters) and reverberation over such scales can have long decay 
times, possibly due to atmospheric turbulence as well as reflections 
(Knudsen, 1946). Although outdoor reverberation over such scales has 
not been characterized in detail, it is plausible that humans may 
encounter very distant, high-intensity sources in outdoor settings with 
reverberation that is similar to the “indoor” reverberation that we 
simulated. This may explain the typicality ratings we obtained in Ex-
periments 10 and 11, in which added reverberation did not decrease the 
perceived appropriateness of the acoustic environment for high- 
intensity outdoor sounds (Fig. 7B). Nonetheless, for lower-intensity 
sources, our synthetic reverberation produced a larger decrement in 
appropriateness for outdoor than indoor sources, presumably because 
low-intensity sources are typically encountered with such reverberation 
only when indoors. It would clearly be ideal to eventually substantiate 
this argument with measurements of reverberation from a large corpus 
of real-world audio and more thorough investigations of reverberation 
over large distances in outdoor scenes. 

We note also that our manipulations of reverberation did not explore 
the full space of reverberation, instead using a single decay time and 
direct-to-reverberant ratio. We have no reason to think that the results 
are specific to the particular reverberation we used, but there is clearly 
room for a more exhaustive exploration of the effects of reverberation on 
recognition. 

We relied exclusively on recognition accuracy and analyses of 
recognition confusions, but note that other experimental measures 
might give further insight. For instance, listening effort (Winn, Wendt, 

Koelewijn, & Kuchinsky, 2018) might also vary depending on whether 
sounds are presented in ecologically valid conditions, and might be more 
sensitive than accuracy. Inferred source properties might also be 
decodable from neurophysiological measurements. 

17.3. Environmental sound perception 

In general, human perception of environmental sounds has been 
little studied in comparison to speech or music, even though such sounds 
figure prominently in everyday behavior. Past studies have begun to 
characterize human environmental sound recognition, and have iden-
tified some of the acoustical features underlying this recognition (Balas, 
1993; Gygi et al., 2004, 2007; McDermott, Schemitsch, & Simoncelli, 
2013; McDermott & Simoncelli, 2011; McWalter & McDermott, 2018). 
In some cases listeners prefer to categorize environmental sounds ac-
cording to their source than to acoustical features (Gygi et al., 2007; 
Lemaitre, Houix, Misdariis, & Susini, 2010). This latter finding is 
consistent with our hypothesis that recognition involves estimation of 
the properties of a sound source. 

Our work also brings to light the importance of using ecologically 
valid intensities and reverberation in experiments with environmental 
sounds. By default one might be inclined to equate intensity (and/or 
reverberation) across experimental stimuli, but our results suggest this 
could have unintended consequences (e.g., if low-intensity sources are 
presented at moderate SPL levels, or with reverberation implying an 
implausibly large distance). We also highlight some of the challenges 
involved in using real-world sounds as stimuli. The distance judgments 
(Experiment 5, when compared with Experiment 7) suggest that real- 
world recordings likely carry reverberant cues to distance. Our experi-
ments show that these cues indirectly affect the perceived source in-
tensity. Source recognition in turn, may affect distance judgments 
(Fig. 5C). These implicit interactions merit consideration in experiment 
design when using natural sound recordings. 

It is plausible that analogous effects exist for other properties that are 
associated with a source. For instance, some sounds tend to occur in 
particular locations relative to the listener (e.g., birds that mostly fly 
overhead (Parise, Knorre, & Ernst, 2014), or footsteps, which tend to 
come from below). Similarly, some sounds are much more likely to occur 
far from a listener than nearby. Such properties may also constrain 
recognition, and may also need to be considered when designing 
experiments. 

17.4. Causal inference in audition 

Our results suggest that listeners infer the underlying physical pa-
rameters that produce environmental sounds and use these parameters 
to recognize them. In the case of source intensity, the auditory system 
appears to jointly infer the distance and source intensity of a sound, and 
then infers a type of source consistent with this estimated source in-
tensity. The role of distance cues has been previously noted in loudness 
judgments, which are proposed to reflect inferred source intensity 
(Zahorik & Wightman, 2001). However, the importance of such in-
ferences for recognition, whether due to intensity or reverberation, had 
not been addressed prior to this paper. Our main contribution is to 
demonstrate that causal inferences have objectively measurable conse-
quences on auditory recognition (arguably the most important auditory 
behavior), even for the simplest physical attributes of sound that one 
might naively think would be ignored for the purposes of recognition, 
particularly given the ubiquity of normalization processes in sensory 
systems (Carandini & Heeger, 2011; Schwartz & Simoncelli, 2001). 
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Examples of causal inference (i.e., estimation of a causal parameter 
in a non-trivial generative model) are fairly well established in various 
aspects of vision: object recognition (Kersten, Mamassian, & Yuille, 
2004), shape from shading (Adams, Graf, & Ernst, 2004), size estimation 
(Oyama, 1974), audiovisual integration (Shams & Beierholm, 2010), 
and intuitive physical judgments (Gerstenberg, Goodman, Lagnado, & 
Tenenbaum, 2012). Our work suggests that sophisticated implicit in-
ferences are also fundamental to human audition. 
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Appendix A. Headphone calibration 

For the first three in-lab listening experiments (Experiments 1, 2, and 4), sounds were presented through Sennheiser HD280 Pro headphones, which 
we calibrated using a Svantek 979 sound meter attached to a GRAS microphone with an ear and cheek simulator (Type 43-AG). We used this setup to 
estimate the transfer function of our entire sound presentation system (from the computer to the eardrum), by playing pink Gaussian noise and 
comparing the input spectrum with the spectrum measured by the microphone. We used this frequency response to calculate the overall sound 
pressure level of a sound for a given input waveform (by computing the power spectrum of the original waveform, multiplying by the gain at each 
frequency, and then summing the adjusted power across frequencies), and then scaled the waveform so as to yield the desired sound pressure level at 
the ear. For Experiments 12 and S1, we additionally compensated for the transfer function of the sound presentation system (as described in section 
16.1.4) to make the effective transfer function flat, but otherwise set the presentation level as in the other in-lab experiments. 

All other experiments were conducted entirely online because they either had no listening component (Experiments 3, 5, and 9), or because they 
were very short (Experiments 6–8 and 10–11), which made in-lab recruitment difficult. 

Appendix B. Pure tone detection thresholds 

A majority (56%) of listeners in Experiment 1 had pure tone detection thresholds at or below 30 dB HL at all frequencies tested (0.25 to 8 kHz), but 
some of the older listeners had elevated thresholds, typically at higher frequencies. In Experiment 12, we tested a younger cohort all of whom had 
hearing thresholds below 30 dB to ensure that the results were robust to incidental hearing impairment. 

In other in-lab experiments where all sounds were presented at 70 dB, and in all online listening experiments, we did not measure detection 
thresholds as sounds were intended to be well above threshold. All listeners in these experiments self-reported normal hearing. All online listening 
tasks included a test to ensure that listeners were wearing headphones (Woods et al., 2017). 

Appendix C. Source Intensity and Location Ratings 

C.1. Intensity 

As a proxy for the typical physical source intensity for each sound in our set of real-world recordings (which we did not have access to given the 
diverse origins of the recordings), we asked a second set of online workers to rate the typical intensity of a sound on a scale of 1–10 using the following 
instructions: 

Listen to each of the sounds presented below and indicate how loudly you typically hear each sound in your daily life on a 1 (quiet) to 10 (loud) scale. For 
example, sounds typically heard at very quiet sound level such as writing (pen on paper) or typing would be rated as a 1, while sounds that are typically very loud, 
such as a jet engine or a jack-hammer would be rated as a 10. For sounds that can be heard at a variety of sound levels, indicate the level at which you most 
frequently hear that sound. 

We collected ratings from 389 online workers, which was sufficient to produce split-half correlations of the average rating for a sound that 
exceeded 0.9. 

We chose to present the online workers with both the sound and a description of the sound so that they would have a good sense for the type of 
sound about which we were asking. In this experiment, all sounds were normalized to have the same root-mean-square amplitude. The absolute 
intensity was set individually by workers because they listened to sounds on their own devices. 

These ratings were averaged across online workers and used to classify sound clips into low-intensity and high-intensity sources, on the assumption 
that sounds that are typically loud in everyday life tend to be produced by high-intensity sources, whereas those that are typically quiet tend to be 
produced by low-intensity sources. 

C.2. Location 

The sounds were also divided into two groups of typically indoor and typically outdoor sounds. To do this we asked a set of online workers to listen 
to each of the 300 recorded sounds and rate (on a scale of 1–10) how likely the sound was to be encountered indoors as opposed to outdoors. Workers 
received the following instructions: 
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Listen to each of the sounds presented below and indicate how likely you are to encounter this sound in an indoor environment as opposed to an outdoor 
environment. Use a 1 (only heard outdoor) to 10 (only hear indoor) scale. For sounds that can be both indoors or outdoors, indicate how likely you think the 
sound is to be heard indoors. 

We collected ratings from 50 online workers. We presented the online workers with the sound recording as well as a description of the sound. The 
sounds were categorized by dividing them into two groups (typically indoor and typically outdoor sounds) around the median value. 

Appendix D. Studio recordings 

Forty-five sound sources (Table 3) were recorded in a soundproof booth that was heavily-damped to minimize reverberation. All recordings were 
made with a microphone positioned 10 cm from the sound source (a Rode NT1A with a Focusrite Scarlett 6i6 Analogue-to-Digital-Converter). SPL 
measurements were made for each source with a Svantek SVAN 979 Sound & Vibration Analyzer (also positioned with a 10 cm source-recorder 
separation). The sources were chosen to span a range of SPL levels and typical source locations. The gain settings were adjusted for each 
recording to capture an appropriate dynamic range for the sound. From several minutes of recordings for each sound, 5-s snippets were extracted. 
Where possible the snippet was chosen without truncating the sound (e.g., for the hatchet striking a log a snippet might contain one or two impacts). 
For continuous sounds (e.g., lawnmower) the snippet was given 200 ms linear fades in and out. In each experiment one of these snippets was randomly 
selected for each source. For each recording, several hours were spent preparing, cleaning, and ventilating the soundproof booths. 

In addition to the sounds shown in Table 3, five additional sounds were recorded that were intermediate in both intensity and location (Sawing 
wood (81 dB); Ratchet wrench (75 dB); Drawing a nail from a box (nails scraping and sliding) (69 dB); Velcro (66 dB); Coin dropped on hard surface 
(65 dB)). These sounds were presented in experiments but omitted from analysis because we settled on a 2 x 2 (rather than 3 x 3) design for the sake of 
simplicity. 

Appendix E. Acoustic analyses 

We assessed the extent to which low-intensity and high-intensity sources differ on standard acoustic features (Fig. 7). We first measured the 
average simulated cochlear “excitation pattern” for the different source-intensity groups, i.e., the average power across a filter bank that simulates 
cochlear filtering. Each sound waveform was convolved with a Gammatone filter bank (Slaney, 1998) (128 filters, with center frequencies between 20 
and 10,000 Hz). We then computed the envelopes of the filter responses over time (via the Hilbert transform), converted these envelopes to a dB scale, 
and averaged these values across time and across sounds from the same source intensity group. We found that the differences between groups in their 
excitation pattern were modest relative to the variation within a group (Fig. 7A). 

To ensure that the modest differences in the mean excitation patterns of the sound groups could not explain the differences in their recognition, we 
analyzed recognition performance for subsets of the sounds that were approximately equated in their excitation patterns. We selected a subset of 50 
low-intensity and 50 high-intensity sources with approximately matched excitation patterns by greedily discarding sounds from each group (starting 
from an initial pool of the full set of 75 sounds per group). At each iteration, we discarded the sound that led to the biggest reduction in the mean 
squared error between the average excitation patterns for the low-intensity and high-intensity source groups. We ran this algorithm for 50 iterations, 
alternating between discarding low-intensity and high-intensity sources, so as to discard 25 sounds per group. This was sufficient to produce similar 
average excitation patterns for the two groups (Fig. 7C). 

We next measured the amount of temporal and spectral amplitude modulation, using a standard set of spectrotemporal modulation filters (Chi 
et al., 2005). Modulation was measured in cochleagrams computed using a filter bank similar to the Gammatone filter bank described above (116 
filters between 50 and 10,000 Hz, with frequency responses shaped like the positive portion of a cosine function, with 87.5% overlap between adjacent 
filters; we used this filter bank for convenience because the modulation model was implemented using these filters). The envelopes of the cochlear 
filter responses were compressed to capture the effects of cochlear amplification at low intensity levels (by raising them to the power of 0.3). The 
resulting cochleagram was then convolved in time and frequency with spectrotemporal filters tuned to each of 9 different temporal modulation rates 
(0.5 to 128 Hz in octave steps) and 6 different spectral modulation scales (0.25 to 8 cycles per octave in octave steps). All of the filters were bandpass, 
and their properties have been described previously (Chi et al., 2005). The output of the modulation filter bank was a 4D tensor measuring energy in 
the sound as a function of time, audio frequency, temporal modulation rate and spectral modulation scale. We computed the standard deviation across 
time of this tensor (as a measure of the strength of the temporal fluctuations in each filter’s response), averaged across audio frequency, and averaged 
across sounds from a given intensity group. The result is a 2D matrix which represents the average energy of fluctuations at different temporal and 
spectral modulation rates (Fig. 7B). We found that the pattern of temporal and spectral modulations was similar between the different real-world 
intensity groups. 

Appendix F. Experiment S1: verifying the masking effects of the noise from Experiment 4 

The masking noise in Experiment 12 was designed using pure tone audibility thresholds (Moore et al., 2000), and thus it was not obvious a priori 
that it would have the desired effect when used with natural sounds. We therefore performed a control experiment to verify that the noise had the 
desired effect. 

We tested the effectiveness of the masking noise using a discrimination paradigm in which we attenuated low-intensity frequencies from natural 
sounds (details below) and assessed whether listeners could detect their absence with and without masking noise (Fig. 9A). On each trial listeners were 
asked to judge which of two intervals contained different sounds: in one interval, the same unaltered natural sound was presented twice, and in the 
other interval, the unaltered version was followed by a filtered version with low-intensity frequencies attenuated (by 30 dB). We expected that the 
change to the spectrum would be most noticeable at higher overall sound intensities, where more of the spectrum would be audible (Fig. 9B). The goal 
of Experiment S1 was to test whether this anticipated improvement at higher sound intensities would be eliminated by the use of masking noise 
designed to prevent additional frequencies from becoming audible at high intensities. 
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Fig. 9. Design and results of Experiment S1: Validation of masking noise. (A) Schematic of the task used to assess the efficacy of the masking noise. Each trial 
comprised two intervals. In one interval the same natural sound was presented twice. In the other interval, one of the sounds was filtered to attenuate low-intensity 
frequencies. Listeners were asked to detect which interval contained a change between the two sounds. (B) The experiment was designed such that suppressed 
frequencies should be easier to detect for higher-intensity stimuli due to greater audibility. The masking noise was designed to eliminate this benefit by raising the 
audibility threshold. (C) Frequencies were attenuated that fell below a certain intensity cutoff relative to the threshold of audibility (see text for details). Higher 
cutoffs cause more frequencies to be attenuated, making the task easier. (D) Discrimination performance as a function of the cutoff for stimuli presented at 40 dB 
without noise, at 90 dB without noise, and at 90 dB with noise. Error bars show one standard error of the mean across subjects. As predicted, performance was 
substantially better for higher-intensity stimuli without noise, but this benefit was eliminated by the masking noise, demonstrating that the masking noise had the 
intended effect. 

We presented sounds at three intensities (40, 75, 90 dB) with and without noise. For the lowest-intensity condition (40 dB), we attenuated fre-
quencies based on their maximum power over time (computed from a cochleagram, described below) relative to the threshold of audibility (Fig. 9B). 
We used the maximum power over time (rather than, for example, the mean) because in principle listeners might detect energy in a frequency band 
any time it exceeds the audibility threshold. For the higher-intensity conditions (75 & 90 dB), we instead attenuated frequencies based on their 
maximum power relative to the elevated audibility threshold we intended to produce with noise. If the noise had the intended effect then it should 
have reduced performance on the high-intensity conditions to that of the 40 dB condition. 

We measured the time-varying power of different frequency bands using a Gammatone filter bank designed to mimic the frequency tuning in the 
cochlea. We then attenuated (by 30 dB) all frequency channels whose maximum power over time fell below an “audibility-relative” cutoff (see Fig. 9C 
for an illustration). We manipulated difficulty by varying the cutoff, with higher cutoffs causing more of the spectrum to be suppressed and thus 
making the task easier. This approach allowed us to measure discrimination accuracy as a function of the cutoff for each condition in the experiment 
(Fig. 9D). 

F.1. Participants 

Twenty-two listeners participated in the experiment (12 female; mean age = 25.4 years, SD = 3.3 years). All but one listener had pure tone 
detection thresholds at or below 30 dB HL. One listener had a threshold of 40 dB HL in their left ear at 3 and 4 kHz; the exclusion/inclusion of their data 
did not affect the results. 

F.2. Stimuli and procedure 

On each trial, listeners heard four presentations of a natural sound, divided into two intervals (Fig. 9A). In one interval, one of the two sounds was 
filtered to attenuate frequencies below an “audibility-relative” cutoff. Listeners were instructed to indicate the interval in which the two sounds 
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differed. Each sound was 2 s in duration. There was a 600 ms gap in between sounds from the same interval, and a 1-s gap between the two intervals. 
Linear ramps (100 ms in duration) were applied to the beginning and end of each sound. 

Sounds were presented at one of three intensities (40, 75, and 90 dB), with or without background masking noise, and with 5 different audibility- 
relative cutoffs (0, 5, 15, 25, and 35 dB). The masking noise was the same as that used in Experiment 12. The noise lasted throughout the duration of 
each trial (starting 500 ms before the first sound of the first interval and ending 500 ms after the offset of the last sound of the second interval). Each 
listener heard a different subset of 12 of the natural sounds from Experiments 1 and 12. This relatively small number of sounds was chosen so that each 
sound could be presented once in each of the 30 different conditions (3 intensities × 5 cutoffs × 2 noise conditions – with and without), yielding 360 
trials. We excluded sounds in which the power at most frequencies fell below the maximum audibility relative cutoff (35 dB; since this would have 
caused nearly the entire spectrum to be filtered out), leaving a pool of 186 sounds. The set of 12 sounds used for a listener was randomly drawn from 
this set of 186. 

The experiment was divided into 12 sections of 30 trials, and after each section the listener was given the option to take a short break. 

F.3. Filtering 

We used a Gammatone filter bank to model cochlear responses as a function of time and frequency (128 filters with center frequencies between 20 
Hz and 22,050 Hz) (Slaney, 1998). Sound waveforms were sampled at 44,100 Hz. We measured the Hilbert envelope of each filter’s output, and 
converted this envelope to dB SPL. For each filter, we computed whether its envelope for a given sound/condition fell above or below the audibility- 
relative cutoff, yielding a binary vector of zeros and ones indicating which frequencies to attenuate. To avoid time-domain artifacts (e.g., ringing), we 
smoothed this binary vector using a Gaussian kernel on a logarithmic frequency scale (FWHM = 0.1 octaves), yielding a new vector with smoothed 
values between 0 and 1. This vector was multiplied by 30. We then attenuated each frequency by the number of decibels specified in the corresponding 
element of the vector. The frequency attenuation was implemented in the frequency domain (using FFT/iFFT and interpolating the attenuation vector 
to the frequencies sampled by the FFT). 

F.4. Results 

Fig. 9D shows performance for all conditions. As expected, performance increased as the cutoff was increased (F(4, 84) = 88.47, p < 0.01), and, in 
the absence of masking noise, performance increased with stimulus intensity (F(2, 42) = 37.61, p < 0.01). However, performance at 90 dB with noise 
was very similar to performance at 40 dB without noise. As a consequence, there was no significant effect of intensity on performance with noise (F(2, 
42) = 1.63; p = 0.21), and there was a significant interaction between the effect of intensity and the effect of masking noise (F(2, 42) = 11.92, p <
0.01). These results suggest that most of the frequencies that became audible at 90 dB were masked by our noise, as intended. 

Appendix G. Supplementary data 

Sound stimuli and responses from listeners and online graders for all experiments are available at https://github.com/jt-uiowa/causal-inferen 
ce-in-environmental-sound-recognition_data. Supplementary data to this article can be found online at [https://doi.org/10.1016/j.cognition.20 
21.104627]. 
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Supplementary Information	
 
 

	
Figure S1. Same as Figure 2A but showing performance for all 4 partitions of the sound set based on 
their rated  
real-world source intensity. 
 
 
 
 
 
 

  
 
Figure S2. The goal of the masking noise was to elevate the audibility threshold so that frequencies 
that would normally be inaudible at low sound intensities remain inaudible at higher intensities. This 
goal was accomplished by starting with threshold equalizing noise (TEN) (41), which equates 
thresholds for all frequencies. We then shaped TEN with the contour of audibility in quiet so that the 
audibility threshold would be elevated rather than flattened. This figure plots the power spectrum 
(computed with the FFT) and expected audibility threshold for TEN and our spectrally shaped noise. 
In the experiment, the overall intensity of the masking noise was yoked to the intensity of the stimuli, 
causing the audibility threshold to shift up and down with the intensity of the stimulus. In this figure we 
show the spectrum and audibility curves corresponding to a single high-intensity stimulus (90 dB).	
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Figure S3. Same as Figure 8B but showing performance for all 4 partitions of the sound set based on 
their rated real-world source intensity.	 	

Experiment 12: E�ect of audibility on intensity-dependent recognition
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Low-intensity sounds High-intensity sounds 

car idling 2.97 bus decelerating 4.88  
slicing bread 3.21 sheep 4.89 
finger tapping 3.56  Ping pong 4.94  
chair rolling 3.69 turkey gobble 4.94 
coffee machine 3.69 rain 5.08  
owl hooting 3.70 water splashing 5.11 
dial tone 3.77  pool balls colliding 5.16 
stream 3.90 pig snorting 5.17 
gargling 3.94  marching 5.29 
fire 3.95 shower 5.29 
typing 3.95 rocking chair 5.31 
grating food 4.08 reception desk bell 5.36 
jumping rope 4.17 dishes clanking 5.38  
shoveling 4.19 cuckoo clock 5.41 
wind 4.19 printing 5.52 
elevator door 4.22 kettle whistling 5.58 
walking on gravel 4.35 cow mooing 5.63 
walking on leaves 4.37 coughing 5.66  
grunting and groaning 4.38 hair dryer 5.77 
bike bell 4.51 crying 6.24 
swimming 4.51 laughing 6.25 
rattlesnake 4.57 dentist drill 6.38 
frog croaking 4.67 doorbell 6.41 
basketball dribbling 4.67 blender 6.42 
horse galloping 4.75 vacuum 6.73 
car accelerating 4.78 dog barking 6.83 

Table S1: Distance-matched groupings of low- and high-intensity sounds obtained from Experiment 6 
and used in Figure 4. The numbers show the intensity ratings as given in Table S1.	
	



	
Low-intensity sounds High-intensity sounds 

rustling branch (52dB)  electric can opener (83dB)  
suitcase rolling (52dB)  coffee bean grinder (88dB) 
branch trimmer (53dB)  bicycle bell (92dB) 
footsteps in sand (55dB)  hair dryer (92dB) 
pepper grinder (56dB) dropping stones on stones (92dB) 
biting into an apple (57dB) compressed air spray 95dB 
splashing water (57dB) vacuum cleaner (95dB) 
zipper (58dB)  hammering a nail into wood (97dB) 
shoveling sand (59dB)  drill (101dB) 
pouring liquid (59dB)  glass smashing (102dB) 
peeling vegetables (59dB) hammering metal (112dB) 
chopping vegetables (60dB) chainsaw (113dB) 
scissors (62dB) leaf blower (114dB) 

Table S2: Distance-matched groupings of low- and high-intensity studio-recorded sounds obtained 
from Experiment 7 and used in Figure 5.	
	  



Indoor sounds Outdoor sounds 
slicing bread 3.21 breathing 3.39  
finger tapping 3.56 spray can shaking 3.61 
coffee machine 3.69 stream 3.90  
chair rolling 3.69 fire 3.95  
dial tone 3.77  jumping rope 4.17  
gargling 3.94  shoveling 4.19 
grating food 4.08 walking on gravel 4.35 
elevator door 4.22 walking on leaves 4.37 
grunting and groaning 4.38 bike bell 4.51  
running up stairs 4.84 dog panting 4.52 
ping pong* 4.94  rattlesnake 4.57 
shower* 5.29 frog croaking 4.67  
dishes clanking* 5.38 ratchet 4.81 
cuckoo clock* 5.41 walking with heels 4.87 
coughing* 5.66 bus decelerating* 4.88  
hair dryer* 5.77 sheep* 4.89 
applause 6.16 rain* 5.08  
crying* 6.24  water splashing* 5.11  
laughing* 6.25 pig snorting* 5.17 
dentist drill* 6.38 marching* 5.29 
doorbell* 6.41 horse neighing* 5.39 
blender* 6.42 cicadas* 5.43 
vacuum* 6.73 cow mooing* 5.63 
crowd laughing* 6.59 crow* 5.73 
glass shattering* 7.19 whistle* 6.79 
fire alarm* 7.51 train warning bell* 7.27 

Table S3: Distance-matched groupings of indoor and outdoor sounds used in Fig 6. The numbers 
show the intensity ratings as given in Table S1. “High-intensity” sounds are marked with an asterisk. 	
	  



Indoor sounds Outdoor sounds 
peeling vegetables (59dB) rustling branch (52dB)  
chopping vegetables (60dB) branch trimmer (53dB) 
scissors (62dB)  footsteps in sand (55dB)  
crumpling paper (69dB) splashing water (57dB) 
electric shaver (72dB)  shoveling sand (59dB)   
stapler* (75dB) footsteps in pebbles (69dB) 
clanking dishes* (78dB) walking in dry leaves (69dB) 
electric can opener* (83dB) spray can shaking* (76dB) 
hair dryer* (92dB) hatchet striking a log* (78 dB) 
vacuum* (95dB) leaf blower* (114dB) 

Table S4: Distance-matched groupings of indoor and outdoor sounds obtained from Experiment 7 and 
used in Fig 6. “High-intensity” sounds are marked with an asterisk. 	
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