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SUMMARY

The organization of human auditory cortex remains
unresolved, due in part to the small stimulus sets
common to fMRI studies and the overlap of neural
populations within voxels. To address these chal-
lenges, we measured fMRI responses to 165 natural
sounds and inferred canonical response profiles
(‘‘components’’) whose weighted combinations ex-
plained voxel responses throughout auditory cortex.
This analysis revealed six components, each with
interpretable response characteristics despite being
unconstrained by prior functional hypotheses. Four
components embodied selectivity for particular
acoustic features (frequency, spectrotemporal mod-
ulation, pitch). Two others exhibited pronounced
selectivity for music and speech, respectively, and
were not explainable by standard acoustic features.
Anatomically, music and speech selectivity concen-
trated in distinct regions of non-primary auditory cor-
tex. However, music selectivity was weak in raw
voxel responses, and its detection required a decom-
position method. Voxel decomposition identifies
primary dimensions of response variation across
natural sounds, revealing distinct cortical pathways
for music and speech.

INTRODUCTION

Just by listening, humans can discern a vast array of informa-
tion about the objects and events in the environment around
them. This ability to derive information from sound is instanti-
ated in a cascade of neuronal processing stages extending
from the cochlea to the auditory cortex. Although much is
known about the transduction and subcortical processing of
sound, cortical representations of sound are less well under-
stood. Prior work has revealed tuning in and around primary
auditory cortex for acoustic features such as frequency (Da
Costa et al., 2011; Humphries et al., 2010), temporal and spec-
tral modulations (Barton et al., 2012; Chi et al., 2005; Santoro
et al., 2014; Schönwiesner and Zatorre, 2009), spatial cues
(Rauschecker and Tian, 2000; Stecker et al., 2005), and pitch

(Bendor and Wang, 2005; Norman-Haignere et al., 2013; Patter-
son et al., 2002). The tuning properties of non-primary regions
are less clear. Although many studies have reported selectivity
for vocal sounds (Belin et al., 2000; Petkov et al., 2008) and
speech (Mesgarani et al., 2014; Overath et al., 2015; Scott
et al., 2000), the cortical representation of environmental
sounds (Engel et al., 2009; Giordano et al., 2013) and of music
(Abrams et al., 2011; Angulo-Perkins et al., 2014; Fedorenko
et al., 2012; Koelsch et al., 2005; Leaver and Rauschecker,
2010; Rogalsky et al., 2011; Tierney et al., 2013) is poorly under-
stood. Moreover, debate continues about the extent to which
the processing of music, speech, and other natural sounds re-
lies on shared versus distinct neuronal mechanisms (Peretz
et al., 2015; Zatorre et al., 2002) and the extent to which these
mechanisms are organized hierarchically (Chevillet et al., 2011;
Hickok and Poeppel, 2007; Staeren et al., 2009).
This paper was motivated by two limitations of many neuroi-

maging studies (including our own) that have plausibly hindered
the understanding of human auditory cortical organization. First,
responses are typically measured to only a small number of stim-
ulus dimensions chosen to test particular hypotheses. Because
there aremany dimensions to which neurons could be tuned, it is
difficult to test the specificity of tuning and to know whether the
dimensions tested are those most important to the cortical
response. Second, the spatial resolution of fMRI is coarse:
each voxel represents the aggregate response of hundreds of
thousands of neurons. If different neural populations spatially
overlap, their response will be difficult to isolate using standard
voxel-wise analyses.
To overcome these limitations, we developed an alternative

method for inferring neuronal stimulus selectivity and its
anatomical organization from fMRI data. Our approach tries
to explain the response of each voxel to a large collection of
natural sounds as the weighted sum of a small number of
response profiles (‘‘components’’), each potentially reflecting
the tuning properties of a different neuronal sub-population.
This method infers response dimensions from structure in the
data, rather than testing particular features hypothesized to
drive neural responses. And unlike standard voxel-wise
analyses, our method can isolate responses from overlapping
neural populations, because multiple response profiles are
used to model each voxel. When applied to auditory cortex,
voxel decomposition identifies a small number of interpretable
response dimensions and reveals their anatomical organization
in the cortex.
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RESULTS

Experiment I: Modeling Voxel Responses to Commonly
Heard Natural Sounds
We measured the average response of voxels throughout audi-
tory cortex to a diverse collection of 165 natural sounds (Fig-
ure 1A). The sound set included many of the most frequently
heard and recognizable sounds that humans regularly en-
counter. We modeled each voxel’s response as the weighted

combination of a set of ‘‘components’’ (Figure 1B). Each com-
ponent was defined by a response profile across the 165 sounds
and a vector of weights across the voxels, specifying the
contribution of that response profile to each voxel. Notably, no
information about either the specific sounds or the anatomical
positions of voxels was used to infer components. Thus, any
consistent structure that emerges from the analysis must be
driven by structure in the data and not by prior hypotheses about
specific functional selectivities or their anatomical distribution.

A

1. Man speaking
2. Flushing toilet
3. Pouring liquid
4. Tooth-brushing
5. Woman speaking
6. Car accelerating
7. Biting and chewing
8. Laughing
9. Typing
10. Car engine starting
11. Running water
12. Breathing
13. Keys jangling
14. Dishes clanking
15. Ringtone
16. Microwave
17. Dog barking

18. Walking (hard surface)
19. Road traffic
20. Zipper
21. Cellphone vibrating
22. Water dripping
23. Scratching
24. Car windows
25. Telephone ringing
26. Chopping food
27. Telephone dialing
28. Girl speaking
29. Car horn
30. Writing
31. Computer startup
32. Background speech
33. Songbird
34. Pouring water

35. Pop song
36. Water boiling
37. Guitar
38. Coughing
39. Crumpling paper
40. Siren
41. Splashing water
42. Computer speech
43. Alarm clock
44. Walking with heels
45. Vacuum
46. Wind
47. Boy speaking
48. Chair rolling
49. Rock song
50. Door knocking
...

Stimulus Set: 165 Commonly Heard Natural Sounds
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Figure 1. Voxel Decomposition Analysis
(A) Cortical responses to 165 commonly heard natural sounds were measured in human auditory cortex using fMRI. Fifty of the 165 sounds are listed, ordered by

the frequency with which they were judged to be heard in daily life.

(B) The average response of each voxel to each sound was represented as a matrix (165 sounds3 11,065 voxels across all ten subjects). Each column contains

the response of a single voxel to all 165 sounds. Each voxel’s response was modeled as the weighted sum of a set of canonical ‘‘response profiles.’’ This

decomposition can be expressed as a factorization of the data matrix into a response matrix and a weight matrix. Response profiles and weights were inferred

using statistical criteria alone, without using any information about the sounds or anatomical positions of the voxels.

(C) The proportion of voxel response variance explained by different numbers of components (see also Figure S1). The figure plots themedian variance-explained

across voxels, calculated separately for each subject and then averaged across the ten subjects from Experiment I; error bars plot one standard error of themean

across subjects. Variance estimates are noise-corrected (see Supplemental Experimental Procedures). Six components were sufficient to account for more than

80% of the noise-corrected variance.
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Voxel Decomposition
The 165-dimensional response vectors from all voxels in all
subjects were concatenated to form the data matrix (11,065
voxels across all ten subjects). To infer components, we
searched for matrix factorizations that could approximate the
data matrix as the product of two smaller matrices: a ‘‘response’’
matrix and a ‘‘weight’’ matrix (see Figure 1B). The response ma-
trix expresses the response of each inferred component to each
sound (165 sounds3 N components), and the weight matrix ex-
presses the contribution of each component to each voxel
(N components 3 11,065 voxels).
For a given number of components, the factorization is not

unique and must be constrained by additional criteria. We con-
strained the factorization with assumptions about the distribu-
tion of component weights across voxels. We took advantage
of the fact that summing independent random variables tends
to produce a quantity that is closer to Gaussian-distributed.
Thus, if voxel responses are a weighted sum of components
with non-Gaussian weight distributions across voxels, the
components should be identifiable as those whose weight distri-
butions deviate most fromGaussianity. We searched for compo-
nents with non-Gaussian weight distributions using two different
algorithms. The first algorithm, a variant of independent compo-
nents analysis (Hyvärinen, 1999), quantified deviations from
Gaussianity using a non-parametric measure of non-Gaussianity
(‘‘negentropy’’). The second algorithm used a non-Gaussian
prior on the distribution of voxel weights (the Gamma distribu-
tion) and searched for response profiles that maximized the like-
lihood of the data given this prior. Both methods recovered com-
ponents with non-Gaussian voxel weights that explainedmost of
the reliable voxel response variance, providing empirical support
for the assumption that the components underlying the data are
distributed in a non-Gaussian manner. The specific response
profiles and voxel weights inferred by each method were very
similar, indicating that the results are robust to the specific sta-
tistical criterion used. We focus our discussion on the results
of the first method because it is faster, more standard, and
does not depend on a specific parameterization of the data.
The only free parameter in the analysis is the number of com-

ponents. We found that six components were sufficient to
explain more than 80%of the replicable voxel response variance
(Figure 1C). Moreover, cross-validated prediction accuracy was
best using just six components, indicating that components
beyond the sixth were primarily driven by fMRI noise that did
not replicate across scans (Figure S1). We focused on these first
six components in all subsequent analyses.
We first describe the anatomical distribution of each compo-

nent, obtained by projecting its voxel weights back into anatom-
ical coordinates. We then describe the acoustic and semantic
features of sounds that explained the response profile of each
component. We refer to the components using numbers that
reflect how much of their response could be accounted for by
standard acoustic measures (1 being the most and 6 being the
least, as explained below).
Component Voxel Weights Plotted in Anatomical
Coordinates
We examined the component anatomy using group maps of
the voxel weights. Maps were computed by aligning each sub-

ject to a standardized anatomical template, averaging the voxel
weights for each component across subjects, and transforming
this average weight into ameasure of statistical significance (see
Supplemental Experimental Procedures). For comparison, we
identified tonotopic gradients using responses to pure tones. A
group tonotopic map exhibited the two mirror-symmetric gradi-
ents widely observed in primary auditory cortex (Figure 2A)
(Humphries et al., 2010). Figure 2B plots component weight
maps with outlines of high- and low-frequency primary fields
overlaid (see Figure S2 for weight maps from the parametric
model). Tonotopic maps and voxel weights from individual sub-
jects were generally consistent with the group results (Figure S3).
As a summary, Figure 2C plots outlines of the regions with high-
est weight for each component.
Although no anatomical information was used to infer compo-

nents, voxel weights for each component were significantly
correlated across subjects (p < 0.001; permutation test). The
weights systematically varied in their overlap and proximity to
primary auditory cortex (as defined tonotopically). Components
1 and 2 primarily explained responses in low- and high-fre-
quency tonotopic fields of primary auditory cortex (PAC),
respectively. Components 3 and 4 were localized to distinct re-
gions near the border of PAC: concentrated anteriorly and pos-
teriorly, respectively. Components 5 and 6 concentrated in
distinct non-primary regions: Component 5 in the superior tem-
poral gyrus, lateral to PAC, and Component 6 in the planum
polare, anterior to PAC, as well as in the left planum temporale,
posterior to PAC.
All of the components had a largely bilateral distribution; there

were no significant hemispheric differences in the average
weight for any of the components (Figure S4). There was a
non-significant trend for greater weights in the left hemisphere
of Component 6 (t(9) = 2.21; p = 0.055), consistent with the
left-lateralized posterior region evident in the group map.
Component Response Profiles and Selectivity for Sound
Categories
Figure 2D plots the full response profile of each inferred compo-
nent to each of the 165 tested sounds. Sounds are colored
based on their membership in one of 11 different categories.
These profiles were reliable across independent fMRI scans
(see Experimental Procedures; test-retest correlation: r = 0.94,
0.88, 0.70, 0.93, 0.98, 0.92 for Components 1–6, respectively;
Figure S5A). The response profiles were also relatively robust
to the exact sounds tested (Figure S5B): for randomly sub-
sampled sets of 100 sounds, the profiles inferred were highly
correlated with those inferred using all 165 sounds (median cor-
relation > 0.95 across subsampled sound sets for all six
components).
Figure 2E plots the average response of each component to

sounds with the same category label (assigned based on an
online survey; see Experimental Procedures). Components 1–4
responded substantially to all of the sound categories. In
contrast, Components 5 and 6 responded selectively to sounds
categorized as speech and music, respectively. Category labels
accounted for more than 80% of the explainable response vari-
ance in these two components.
For Component 5, all of the sounds that produced a high

response were categorized as ‘‘English speech’’ or ‘‘foreign

Neuron 88, 1281–1296, December 16, 2015 ª2015 Elsevier Inc. 1283



A

B

C

D

E

Summary Map: Outlines of Regions with High Weight

(legend on next page)

1284 Neuron 88, 1281–1296, December 16, 2015 ª2015 Elsevier Inc.



speech,’’ with the next-highest response category being vocal
music (which also had speech content due to lyrics). The
response to non-speech vocalizations (human or animal) was
higher than the response to non-vocal sounds, but substantially
lower than the response to speech. Notably, responses to foreign
speech were at least as high as responses to English speech,
even though all of the participants were native English speakers
(this remained true after excluding responses to foreign lan-
guages that subjects had studied for at least 1 year). Component
5 thus responded selectively to sounds with speech structure,
regardless of whether the speech conveyed linguistic meaning.
Component 6, in contrast, responded primarily to sounds

categorized as music: of the 30 sounds with the highest
response, all but two were categorized as musical sounds by
participants. Even the two exceptions were melodic: ‘‘wind
chimes’’ and ‘‘ringtone’’ (categorized as ‘‘environmental’’ and a
‘‘mechanical’’ sounds, respectively). Other non-musical sounds
produced a low response, even those with pitch (e.g., speech).
The anatomical distribution of these components (Figure 2B)

suggests that speech- and music-selective responses are
concentrated in distinct regions of non-primary auditory cortex,
with speech selectivity lateral to primary auditory cortex andmu-
sic selectivity anterior and posterior to primary auditory cortex.
We emphasize that these components were determined by sta-
tistical criteria alone—no information about sound category or
anatomical position contributed to their discovery. These results
provide evidence that auditory cortex contains distinct anatom-
ical pathways for the analysis of music and speech.
Response Correlations with Acoustic Measures
We next explored the acoustic sensitivity of each component,
both to better understand their response properties and to test
whether the selectivity of Components 5 and 6 for speech and
music could be explained by standard acoustic features. First,
we visualized the acoustic structure of the sounds that produced
the highest and lowest response for each component by plotting
their ‘‘cochleograms’’—time-frequency decompositions, similar
to spectrograms, intended to summarize the cochlea’s repre-
sentation of sound (Figure 3A). We then computed the correla-
tion of each component’s response profile with acoustic
measures of frequency and spectrotemporal modulation for
each sound (Figures 3B and 3C).
These analyses revealed that some of the components could

be largely explained by standard acoustic features. Component

1 produced a high response for sounds with substantial low-fre-
quency energy (Figures 3A and 3B; p < 0.001, permutation test),
consistent with the anatomical distribution of its voxel weights,
which concentrated in the low-frequency field of PAC (Figure 2B).
Conversely, Component 2 responded preferentially to sounds
with high-frequency energy (p < 0.001) and overlapped the
high-frequency fields of PAC. This result demonstrates that our
method can infer a well-established feature of auditory cortical
organization.
Components 3 and 4 were primarily selective for patterns of

spectrotemporal modulation in the cochleograms for each
sound. The sounds eliciting the highest response in Component
3 were composed of broadband events that were rapidly modu-
lated in time, evident as vertical streaks in the cochleograms.
In contrast, the sounds eliciting the highest response in Compo-
nent 4 all contained pitch, evident in the cochleograms as hori-
zontal stripes, or spectral modulations, reflecting harmonics.
The contrast between these two components is suggestive of
a tradeoff in sensitivity to spectral versus temporal modulations
(Singh and Theunissen, 2003). Accordingly, the response profile
of Component 3 correlated most with measures of fast temporal
modulation and coarse-scale spectral modulation (p < 0.01),
while that of Component 4 correlated with measures of fine
spectral modulation and slow temporal modulation (p < 0.001)
(Figure 3C). We also observed significant modulation tuning in
Components 1 and 2 (for fine spectral and rapid temporal mod-
ulations, respectively; p < 0.001), beyond that explained by their
frequency tuning (frequencymeasures were partialled out before
computing the modulation correlations). We note that although
components 1-2 and 3-4 appear to have opposite tuning proper-
ties, their response profiles were not strongly anti-correlated,
and they were thus identifiable as distinct components.
Prior studies have argued that the right and left hemispheres

are differentially specialized for spectral and temporal resolution,
respectively (Zatorre et al., 2002). Contrary to this hypothesis,
Components 1–4 exhibited qualitatively similar patterns of voxel
weights in the two hemispheres (Figure 2B), with no significant
hemispheric differences when tested individually. However,
the small biases present were in the expected direction (Fig-
ure S4), with a right-hemisphere bias for Components 1 and
4 and a left-hemisphere bias for Components 2 and 3. When
these laterality differences (Right-Left) were pooled and directly
compared ([C1 + C4] ! [C2 + C3]), a significant difference

Figure 2. Component Voxel Weights and Response Profiles
(A) Tonotopy measured using responses to pure tones. High- and low-frequency regions of primary auditory cortex are outlined with white and black outlines,

respectively.

(B) Component voxel weights, averaged across subjects aligned to a standardized anatomical template, and transformed to a measure of significance via a

permutation test across the sound set. Eachmap plots logarithmically transformed p values (!log10[p]), signed such that positive values indicate positive weights

and negative values indicate negative weights. Color scales span the central 95% of the p value distribution for each component. Outlines of high- and low-

frequency regions within primary auditory cortex are overlaid. See Figure S2B for weight maps inferred using the Parametric Model, Figure S3 for individual

subject weight maps, and Figure S4 for a quantification of hemispheric differences.

(C) Summary map showing outlines of the 10% of voxels with the highest weight for each component.

(D) Response profiles for the inferred components. Each figure plots the responsemagnitude (arbitrary units) of each component to all 165 sounds tested. Sounds

are ordered by response magnitude and colored based on their membership in one of 11 different categories, assigned based on the judgments of human

listeners. Components 5 and 6 responded selectively to sounds categorized as speech and music, respectively. See Figure S2C for response profiles inferred

using the Parametric Model and Figure S5 for measures of response profile reliability.

(E) Component responses averaged across sounds from the same category. Error bars plot one standard error of the mean across sounds from a category,

computed using bootstrapping (10,000 samples).
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emerged (t(9) = 2.47; p < 0.05). These results are consistent with
the presence of hemispheric biases in spectral and temporal
modulation sensitivity, but show that this bias is quite small rela-
tive to within-hemisphere differences.
Collectively, measures of frequency andmodulation energy ac-

counted for much of the response variance in Components 1–4
(Figure3D; 86%,76%,68%, and67%, respectively; seeFigure3E
for the variance explained by subsets of acoustic measures).
Category labels explained little to no additional variance for these
components. Incontrast, forComponents5 and6, category labels
explained substantially more variance than the acoustic features
(p < 0.001), and when combined, acoustic features explained little
additional variance beyond that explained by the categories.
Thus, the selectivity of Components 5 and 6 for speech andmusic
sounds cannot be explained by standard acoustic features.

Experiment II: Speech and Music Scrambling
Music and speech are both notable for having distinct and
recognizable structure over relatively long timescales. One
approach to probing sensitivity to temporal structure is to
reorder short sound segments so that local but not global struc-
ture is preserved (Abrams et al., 2011). A recent study introduced
‘‘quilting’’ for this purpose—a method for reordering sound seg-
ments while minimizing acoustic artifacts (Overath et al., 2015)—
and demonstrated that regions in the superior temporal gyrus
respond preferentially to intact compared with quilt-scrambled
speech. We used the same procedure to provide an additional
test of the selectivity of our components.
We measured responses to intact and scrambled speech and

music in the same subjects scanned in Experiment I. As a result,
we could use the component voxel weights from Experiment I to
infer the response of each component to the new stimulus condi-
tions fromExperiment II (seeExperimental Procedures). ForCom-
ponents 1–4, there was little difference in the response to intact
and scrambled sounds for either category (Figures 4A and 4B).
In contrast, Component 5 responded more to intact than scram-
bled speech (t(7) = 7.24, p < 0.001) and Component 6 responded
more to intact than scrambled music (t(7) = 6.05, p < 0.001), pro-
ducing a three-way interaction between category (speech, mu-
sic), scrambling, and components (F(1,5) = 7.37, p < 0.001). This
result provides further evidence that Components 5 and 6
respond selectively to speech and music structure, respectively.
Searching forMusic-Selective Responseswith Standard
Methods
There are few prior reports of highly selective responses to
musical sounds (Angulo-Perkins et al., 2014; Leaver and Rau-
schecker, 2010). One possible explanation is that prior studies

have tested for music selectivity in raw voxel responses. If mu-
sic-selective neural populations overlap within voxels with other
neural populations, the music selectivity of raw voxel responses
could be diluted. Component analysis should be less vulnerable
to such overlap because voxels are modeled as the weighted
sum of multiple components. To test this possibility, we directly
compared the response of the music-selective component
(Component 6) with the response of the voxels most selective
for music (Figure 5) (see Experimental Procedures). We found
that the selectivity of these voxels for musical structure was
notably weaker than that observed for the music-selective
component across a number of metrics. First, the response pro-
files to the sound set were graded for the voxels but closer to bi-
nary for the component (i.e., high for music, low for non-music)
(Figure 5A). Second, acoustic features and category labels ex-
plained similar amounts of response variance in music-selective
voxels, unlike the component, in which category labels explained
substantially more variance than acoustic features (Figure 5B).
Third, although music-selective voxels responded slightly less
to scrambled music (Figure 5C; t(7) = 4.82, p < 0.01), the effect
was much larger in Component 6, producing a significant inter-
action between the effect of scrambling (intact versus scram-
bled) and the type of response being measured (component
versus voxel) (p < 0.01). The ability to decompose voxel re-
sponses into their underlying components was thus critical to
identifying neural selectivity for music.
We observed similar but less pronounced trends when

comparing speech-selective voxels with the speech-selective
component (Component 5): speech-selective voxels exhibited
robust selectivity for speech sounds (Figure S6) that could not
be accounted for by standard acoustic features. This finding
suggests that speech selectivity is more anatomically segre-
gated than music selectivity and thus easier to identify in raw
voxel responses.
Selectivity of Voxels for Individual Components
The lack of clear music selectivity in raw voxels suggests that at
least some components spatially overlap.We performed two an-
alyses to quantify the extent of overlap between components.
First, we assessed the selectivity of voxels for individual compo-
nents (Figure 6A): for each voxel the weight for a single compo-
nent was normalized by the sum of the absolute values of
the weights for all six components. Normalized weights near
1 indicate voxels that weight strongly on a single component.
Figure 6B plots normalized weights averaged across the top N
% of voxels with the most significant weight along each individ-
ual component (varying N; permutation test, see Experimental
Procedures). Independent data were used to select voxels in

Figure 3. Component Correlations with Acoustic Measures
(A) Cochleograms of the four sounds producing the highest and lowest response in each component. Cochleograms plot an estimate of cochlear response

magnitudes for a sound as a function of time and frequency.

(B) Correlation of component response profiles with energy in different frequency bands.

(C) Correlation of component response profiles with spectrotemporal modulation energy in the cochleograms for each sound.

(D) Total amount of component response variation explained by (1) all acoustic measures, (2) all category labels, and (3) the combination of acoustic measures

and category labels. For Components 1–4, category labels explained little additional variance beyond that explained by acoustic features. For Components 5 and

6, category labels explained most of the response variance, and acoustic features accounted for little additional variance.

(E) Breakdown of the component response variation explained by subsets of the acoustic measures.

Correlation coefficients and measures of explained variance were noise-corrected (see Supplemental Experimental Procedures). Error bars in all panels plot

standard errors across the sound set (via bootstrap).

Neuron 88, 1281–1296, December 16, 2015 ª2015 Elsevier Inc. 1287



individual subjects and measure their component weights to
avoid statistical bias/circularity. As a summary, inset pie charts
show normalized weights averaged across the top 10% of
voxels.

The highest normalized weights were observed for Compo-
nent 5 (speech selective) in the superior temporal gyrus (Fig-
ure 6A), consistent with the robust speech selectivity we
observed in raw voxels (Figure S6). The top 10% of voxels with
the most significant weight for Component 5 had an average
normalized weight of 0.70 (Figure 6B), and thus most of their
response was explained by Component 5 alone. By contrast,
there were no voxels with similarly high normalized weights for
Component 6 (music selective), consistent with the weak music
selectivity observed in raw voxels (Figure 5). The top 10%of vox-
els for Component 6 (average normalized weight of 0.49) also
had substantial weight from Component 4 (normalized weight
of 0.20; Figure 6B), which responded preferentially to sounds
with pitch. This finding is consistent with the anatomical distribu-
tion of these components, both of which overlapped a region
anterior to primary auditory cortex (Figures 2B and 2C).
Testing Assumptions of Non-Gaussianity
Our voxel component analysis relied on assumptions about the
distribution of weights across voxels to constrain the factoriza-

tion of the data matrix. The key assumption of our approach is
that these weight distributions are non-Gaussian. This assump-
tion raises two questions: first, does the assumption hold for
the voxel responses we analyzed, and second, what properties
of cortical responses might give rise to non-Gaussian voxel
weights?
To evaluate whether the non-Gaussian assumption was war-

ranted for our dataset, we relied on the fact that linear combina-
tions of Gaussian variables remain Gaussian. As a consequence,
our method would only have been able to infer components with
non-Gaussian voxel weights if the components that generated
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Figure 4. Experiment II: Testing for Category-Selective Responses
via Scrambling
(A) Component responses (arbitrary units) to intact and temporally scrambled

speech (via ‘‘quilting’’, see Experimental Procedures).

(B) Component responses to intact and scrambled music.

Error bars in both panels plot one standard error of the mean across subjects.
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Figure 5. Analyses of Music Selectivity in Raw Voxels
(A) Left: the average response profile (in units of percent signal change) of

voxels with the most significant response preference for sounds categorized

as music (i.e., music > non-music). Sounds are ordered by response magni-

tude and colored by category. Right: the response profile of Component 6

(arbitrary units), which responded selectively to music.

(B) The amount of response variance explainable by acoustic features, cate-

gory labels, and their combination. Error bars plot standard errors across the

sound set (via bootstrap).

(C) Response to intact and scrambledmusic. Error bars plot one standard error

of the mean across subjects.

See Figure S6 for analogous plots of speech selectivity measured in raw

voxels.
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the data also had non-Gaussian weights. We thus tested
whether the voxel weights for the inferred components were
significantly non-Gaussian (evaluated in independent data).
For all six components, the distribution of weights was signif-

icantly more skewed and kurtotic (sparse) than the Gaussian dis-
tribution (Figure 7A). As a result, a modified Gaussian distribution
with flexible skew and sparsity (the four-parameter ‘‘Johnson’’
distribution) provided a significantly better fit to the weight distri-
butions than the Gaussian (Figure 7B) (as measured by the log-
likelihood of left-out data; p < 0.01 in all cases, via bootstrap-
ping). These results show that all of the components inferred
by our analysis are indeed non-Gaussian by virtue of being
skewed and sparse, validating a key assumption underlying
our approach (see also Figure S7).
Whywould the distribution of neural selectivities in the brain be

skewed and sparse? In practice, we found that the anatomical
distributions of the component weights were spatially clustered.

If neuronswith similar response properties are spatially clustered
in the brain, they should contribute substantially to only a small
fraction of voxels, producing skewed and sparse weight distribu-
tions. Skew and sparsity may thus be useful statistical signatures
for identifying components from fMRI responses, due to anatom-
ical clustering of neurons with similar response selectivities.

DISCUSSION

Our findings reveal components of neuronal stimulus selectivity
that collectively explain fMRI responses to natural sounds
throughout human auditory cortex. Each component has a
distinct response profile across natural sounds and a distinct
spatial distribution across the cortex. Four components reflected
selectivity for standard acoustic dimensions (Figure 3), such as
frequency, pitch, and spectrotemporal modulation. Two other
components were highly selective for speech and music (Figures
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Figure 6. Selectivity of Voxels for Individual Components
(A) Groupmaps plotting component weights for each voxel, normalized by the sum of the absolute values of the weights for all six components. These normalized

weights provide an estimate of the selectivity of each voxel for individual components.

(B) Component weights averaged across the top N% of voxels with the most significant weight along each component. Averaged component weights were
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2D and 2E). The response of these two components could not be
explained by standard acousticmeasures, and their specificity for
speech and music was confirmed with hypothesis-driven experi-
ments that probed sensitivity to category-specific temporal struc-
ture (Figure 4). The selective responses we observed for music
have little precedent (Angulo-Perkins et al., 2014; Leaver andRau-
schecker, 2010), and our analyses suggest an explanation: the
music-selective component spatially overlapped with other com-
ponents (Figure 6). As a result, music selectivity was not clearly
evident in raw voxel responses, which are the focus of most
fMRI analyses (Figure 5). Anatomically, the acoustically driven
components (Components 1–4) concentrated in and around pri-
mary auditory cortex, whereas speech and music-selective com-
ponents concentrated in distinct non-primary regions (Figure 2B).
This pattern suggests that representations of music and speech
diverge in non-primary areas of human auditory cortex.

Our findings were enabled by a novel approach for inferring
neural response dimensions (Figure 1). Our method searches
the space of possible response profiles to natural stimuli for
those that best explain voxel responses. The method is blind
to the properties of each sound and the anatomical position of
each voxel, but the components it infers can be examined post
hoc to reveal tuning properties and functional organization. The
method revealed both established properties of auditory cortical
organization, such as tonotopy (Da Costa et al., 2011; Humph-
ries et al., 2010), as well as novel properties not evident with
standard methods.

Voxel Decomposition
Our method falls into a family of recent computational ap-
proaches that seek to uncover functional organization from re-
sponses to large sets of naturalistic stimuli. One prior approach
has been to model voxel responses to natural stimuli using
candidate sets of stimulus features (‘‘encoding models’’; Huth
et al., 2012; Mitchell et al., 2008; Moerel et al., 2013). Such
models can provide insights into the computations underlying
neural activity, but require a prior hypothesis about the stimulus
features encoded in voxel responses. Our approach is comple-
mentary: it searches for canonical response profiles to the stim-

ulus set that collectively explain the response of many voxels
without requiring prior hypotheses about the stimulus features
that underlie their response (Vul et al., 2012). While there is no
guarantee that voxel responseswill be explained by a small num-
ber of response profiles or that the profiles will be interpretable,
we found that auditory voxels could be explained by six compo-
nents that each reflected selectivity for particular acoustic or se-
mantic properties.
An additional benefit of our approach is its ability to express

voxel responses as the combination of distinct underlying com-
ponents, potentially related to neural sub-populations. We used
linear decomposition techniques to infer components because
the mapping between hemodynamic activity and the underlying
neural response is thought to be approximately linear (Boynton
et al., 1996). Such techniques have previously been used to
analyze fMRI time courses (Beckmann and Smith, 2004), typi-
cally to reveal large-scale brain systems based on ‘‘resting
state’’ activity (Mantini et al., 2007). In contrast, our method de-
composes stimulus-driven voxel responses to natural stimuli to
reveal functional organization within a sensory system.
The non-parametric algorithm we used to recover compo-

nents is closely related to standard algorithms for ‘‘independent
component analysis’’ (Bell and Sejnowski, 1995; Hyvärinen,
1999) and ‘‘sparse coding’’ (Olshausen and Field, 1997), both
of which rely on measures of non-Gaussianity to infer structure
in data. Notably, we found that all of the components inferred
by the non-parametric algorithm had skewed and sparse distri-
butions (Figure 7A). This finding does not reflect an assumption
of the method, because our algorithm could in principle find
any non-Gaussian distribution, including those less sparse
than a Gaussian. Similar results were obtained using a para-
metric model that explicitly assumed a skewed and sparse prior
on the voxel weights (Figure S2), providing evidence that the re-
sults are robust to the specific statistical criterion used.
Although six components were sufficient to capture most

of the replicable variation in our experiment (Figure 1C; Fig-
ure S1), this result does not imply that auditory cortical re-
sponses are spanned by only six dimensions. Instead, the num-
ber of components detectable by our analysis is likely to reflect
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three factors: the resolution of fMRI, the amount of noise in fMRI
measurements, and the variation in our stimulus set along
different neural response dimensions. Thus, the dimensions in-
ferred likely reflect dominant sources of response variation
across commonly heard natural sounds.

Selectivity for Music
Despite longstanding interest in the brain basis of music (Abrams
et al., 2011; Fedorenko et al., 2012; Koelsch et al., 2005; Rogal-
sky et al., 2011; Tierney et al., 2013), there is little precedent for
neural responses specific to music (Angulo-Perkins et al., 2014;
Leaver and Rauschecker, 2010). One reason is the small number
of conditions tested in most fMRI experiments, which limits the
ability to distinguish responses to music from responses to other
acoustic features (e.g., pitch). Our results suggest a second
reason: voxel responses underestimate neuronal selectivity if
different neural populations overlap at the scale of voxels, since
each voxel reflects the pooled response of hundreds of thou-
sands of neurons. We found that themusic-selective component
exhibited consistently higher selectivity than did themost music-
selective voxels (Figure 5), due to overlap with other components
that have different tuning properties (Figure 6). Voxel decompo-
sition was thus critical to isolating music selectivity. The anatom-
ical distribution of the music-selective component our method
revealed was nonetheless consistent with prior neuroimaging
studies that have implicated anterior regions of auditory cortex
in music processing (Angulo-Perkins et al., 2014; Fedorenko
et al., 2012; Leaver and Rauschecker, 2010; Tierney et al.,
2013) and with prior neuropsychology studies that have reported
selective deficits in music perception after focal lesions (Peretz
et al., 1994).

Selectivity for Speech
Our analysis also revealed a component that responded selec-
tively to speech (Component 5), whose anatomical distribution
was consistent with prior studies (e.g., Hickok and Poeppel,
2007; Scott et al., 2000). The response properties and anatomy
of this component are consistent with a recent study that re-
ported larger responses to intact compared with temporally
scrambled foreign speech in the superior temporal gyrus (Over-
ath et al., 2015). Our findings extend this prior work by
demonstrating that: (1) speech-selective regions are highly se-
lective, responding much less to over 100 other non-speech
sounds, and (2) speech-selective regions in the mid-STG
show little to no response preference for linguistically meaning-
ful utterances, in contrast with putatively downstream regions
in lateral temporal and frontal cortex (Fedorenko et al., 2011;
Friederici, 2012). This component may thus reflect an inter-
mediate processing stage that encodes speech-specific struc-
ture (e.g., phonemes and syllables), independent of linguistic
intelligibility.
The anatomy of this component also resembles that of puta-

tive ‘‘voice-selective’’ areas identified in prior studies (Belin
et al., 2000). Notably, the component responded substantially
more to speech sounds than to non-speech vocal sounds
(e.g., crying, laughing) (Fecteau et al., 2004), suggesting that
speech structure is the primary driver of its response. However,
our results do not reveal the specific speech features or proper-

ties that drive its response and do not preclude the coding of
vocal identity.

Selectivity for Acoustic Features
Four components had response profiles that could be largely
explained by standard acoustic features. Two of these compo-
nents (1 and 2) reflected tonotopy, one of the most widely
cited organizing dimensions of the auditory system. Consistent
with prior reports (Da Costa et al., 2011; Humphries et al.,
2010), the tonotopic gradient we observed was organized in
a V-shaped pattern surrounding Heschl’s Gyrus. We also
observed tonotopic gradients beyond primary auditory cortex
(Figure S3), but these were weaker than those in primary
areas.
Component responses were also tuned to spectrotemporal

modulation. The distinct tuning properties of different compo-
nents were suggestive of a tradeoff in selectivity for spectral
and temporal modulation (Rodrı́guez et al., 2010; Singh and The-
unissen, 2003). Components 1 and 4 responded preferentially to
fine spectral modulation and slow temporal modulation (charac-
teristic of sounds with pitch), while Components 2 and 3 re-
sponded preferentially to coarse spectral modulation and rapid
temporal modulation. Anatomically, the components selective
for fine spectral modulation clustered near anterior regions of
Heschl’s Gyrus, whereas those selective for fine temporal mod-
ulation clustered in more posterior-medial regions of Heschl’s
gyrus and the planum temporale. On average the components
sensitive to fine spectral modulations (1 and 4) were slightly
more right-lateralized than the components sensitive to rapid
temporal modulations (2 and 3), consistent with a well-known hy-
pothesis of hemispheric specialization (Zatorre et al., 2002).
However, all components exhibited much greater variation
within hemispheres than across hemispheres. These results
are consistent with a prior study that measured modulation tun-
ing using natural sounds (Santoro et al., 2014).
One of the acoustically responsive components (4) was func-

tionally and anatomically similar to previously identified pitch-
responsive regions (Norman-Haignere et al., 2013; Patterson
et al., 2002; Penagos et al., 2004). These regions respond pri-
marily to ‘‘resolved harmonics,’’ the dominant cue to human
pitch perception, and are localized to anterolateral regions of
auditory cortex, partially overlapping low-frequency but not
high-frequency tonotopic areas.

Implications for the Functional Organization of Auditory
Cortex
A key question animating debates on auditory functional organi-
zation is the extent to which the cortex is organized hierarchically
(Chevillet et al., 2011; Hickok and Poeppel, 2007; Staeren et al.,
2009). Many prior studies have reported increases in response
complexity in non-primary areas relative to that in primary
auditory cortex (PAC) (Chevillet et al., 2011; Obleser et al.,
2007; Petkov et al., 2008), potentially reflecting the abstraction
of behaviorally relevant features from combinations of simpler
responses. Consistent with this idea, simple acoustic features
predicted the response of components in and around primary
auditory cortex (Components 1–4), while components over-
lapping non-primary areas (Components 5 and 6) responded
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selectively to sound categories and could not be explained by
frequency and modulation statistics.

Models of hierarchical processing have often posited the exis-
tence of distinct ‘‘streams’’ within non-primary areas (Lomber
and Malhotra, 2008; Rauschecker and Scott, 2009). For
example, regions ventral to PAC have been implicated in the
recognition of spectrotemporal patterns (Hickok and Poeppel,
2007; Lomber and Malhotra, 2008), while regions dorsal to
PAC have been implicated in spatial computations (Miller and
Recanzone, 2009; Rauschecker and Tian, 2000) and processes
related to speech production (Dhanjal et al., 2008). Although
our findings do not speak to the locus of spatial processing
(because sound location was not varied in our stimulus set),
they suggest an alternative type of organization based on selec-
tivity for important sound categories (Leaver and Rauschecker,
2010), with speech encoded lateral to PAC (reflected by Compo-
nent 5) and music encoded anterior/posterior to PAC (reflected
by Component 6). Our results speak less definitively to the rep-
resentation of other natural sounds. But the posterior distribution
of Component 3, which responded to a wide range of sound cat-
egories, is consistent with a third processing stream for the anal-
ysis of environmental sounds.

Conclusions and Future Directions
The organization we observed was inferred without any prior
functional or anatomical hypotheses, suggesting that organiza-
tion based on speech and music is a dominant feature of cortical
responses to natural sounds. These findings raise a number of
further questions. Is the functional organization revealed by our
method present from birth? Do other species have homologous
organization? What sub-structure exists within speech- and mu-
sic-selective cortex? Voxel decomposition provides a natural
means to answer these questions, as well as analogous ques-
tions in other sensory systems.

EXPERIMENTAL PROCEDURES

Experiment I: Measuring Voxel Responses to Commonly Heard
Natural Sounds
Participants

Ten individuals (4 male, 6 female, all right-handed, ages 19–27) completed two

scan sessions (each !1.5 hr); eight subjects completed a third session. Sub-

jects were non-musicians (no formal training in the 5 years preceding the scan),

native English speakers, and had self-reported normal hearing. Three other

subjects were excluded due to excessive motion or sporadic task perfor-

mance. The decision to exclude these subjects was made before analyzing

their data to avoid potential bias. The study was approved by MIT’s human

subjects review committee (COUHES); all participants gave informed consent.

Stimuli

We determined from pilot experiments that we could measure reliable re-

sponses to 165 sounds in a single scan session. To generate our stimulus

set, we began with a set of 280 everyday sounds for which we could find a

recognizable, 2-second recording. Using an online experiment (via Amazon’s

Mechanical Turk), we excluded sounds that were difficult to recognize (below

80% accuracy on a ten-way multiple choice task; 55–60 participants for each

sound), yielding 238 sounds. We then selected a subset of 160 sounds that

were rated as most frequently heard in everyday life (in a second Mechanical

Turk study; 38–40 ratings per sound). Five additional ‘‘foreign speech’’ sounds

were included (‘‘German,’’ ‘‘French,’’ ‘‘Italian,’’ ‘‘Russian,’’ ‘‘Hindi’’) to distin-

guish responses to acoustic speech structure from responses to linguistic

structure.

Procedure

Sounds were presented using a ‘‘block design’’ that we found produced reli-

able voxel responses in pilot experiments. Each block included five repetitions

of the same 2-second sound. After each 2-second sound, a single fMRI vol-

ume was collected (‘‘sparse sampling’’). Each scan acquisition lasted 1 sec-

ond, and stimuli were presented during a 2.4 s interval between scans.

Because of the large number of sounds tested, each scan session included

only a single block per sound. Despite the small number of block repetitions,

the inferred components were highly reliable (Figure S5A).

Blocks were grouped into 11 ‘‘runs,’’ each with 15 stimulus blocks and 4

blocks of silence with no sounds. Silence blocks were the same duration as

the stimulus blocks and were spaced evenly throughout the run.

To encourage subjects to attend equally to all of the sounds, subjects per-

formed a task in which they detected a change in sound level. In each block,

one of the five sounds was 7 dB lower than the others. Subjects were in-

structed to a press a button when they heard the quieter sound (never the first

sound in the block). The magnitude of the level change (7 dB) was selected to

produce good performance in attentive participants given the intervening fMRI

noise. Soundswere presented throughMRI-compatible earphones (Sensimet-

rics S14) at 75 dB SPL (68 dB for the quieter sounds).

Data acquisition and preprocessing used standard procedures (see Supple-

mental Experimental Procedures).We estimated the average response of each

voxel to each stimulus block (five repetitions of the same sound) by averaging

the response of the second through fifth scans after the onset of each block

(the first scan was excluded to account for hemodynamic delay). Results

were similar using a GLM instead of signal averaging to estimate voxel re-

sponses. Signal-averaged responses were converted to percent signal

change by subtracting and dividing by each voxel’s response to blocks of

silence. These PSC values were subsequently downsampled to a 2 mm

isotropic grid (on the FreeSurfer-flattened cortical surface).

Voxel Selection

For the decomposition analysis, we selected voxels with a consistent response

to the sounds from a large anatomical constraint region encompassing the su-

perior temporal and posterior parietal cortex (Figure 1B). We used two criteria:

(1) a significant response to sounds compared with silence (p < 0.001) and (2) a

reliable response pattern to the 165 sounds across scans 1 and 2 (note that

component reliability was quantified using independent data from scan 3;

see Supplemental Experimental Procedures). The reliability measure we

used is shown in Equation 1. This measure differs from a correlation in assign-

ing high values to voxelswith a consistent response to the sound set, even if the

response does not vary greatly across sounds. Such responses are found in

many voxels in primary auditory cortex, and using the correlation across scans

to select voxels would cause many of these voxels to be excluded:

r = 1"
kV1 " projv2V1 k

kV1 k
(Equation 1)

projV2
V1 =V2

!
VT

2

kV2 k
V1

"
(Equation 2)

where v1 and v2 indicate the response vector of a single voxel to the 165

soundsmeasured in two different scans, and jj jj is the L2 norm. The numerator

in the second term of Equation 1 is the magnitude of the residual left in v1 after

projecting out the response shared by v2. This ‘‘residual magnitude’’ is divided

by its maximum possible value (the magnitude of v1). The reliability measure is

thus bounded between 0 and 1.

For the component analysis, we included voxels with a reliability of 0.3 or

higher, which amounted to 64% of sound-responsive voxels. Although our re-

sults were robust to the exact setting of this parameter, restricting the analysis

to reliable voxels improved the reliability of the inferred components, helping to

compensate for the relatively small amount of data collected per sound.

Experiment II: Measuring Voxel Responses to Scrambled Music and
Speech
Participants

A subset of eight subjects from Experiment I participated in Experiment II (4

male, 4 female, all right-handed, ages 22–28).
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Stimuli

The intact speech sounds were 2 s excerpts of German utterances from eight

different speakers (4 male, 4 female). We used foreign speech to isolate re-

sponses to acoustic speech structure, independent of linguistic meaning

(Overath et al., 2015). Two of the subjects tested had studied German in

school, and for one of these subjects, we used Russian utterances instead

of German utterances. The other subject was tested with German because

the Russian stimuli were not available at the time of the scan. The inclusion

or exclusion of their data did not change the results. The intact music stimuli

were 2-second excerpts from eight different ‘‘big band’’ musical recordings.

Speech and music stimuli were scrambled using the ‘‘quilting’’ algorithm

described byOverath et al. (2015). Briefly, the algorithm divides a source signal

into non-overlapping 30 ms segments. These segments are then re-ordered

with the constraint that segment-to-segment cochleogram changes are

matched to those of the original recordings. The reordered segments are

concatenated using pitch-synchronous-overlap-and-add (PSOLA) so as to

avoid boundary artifacts.

Procedure

Stimuli were presented in a block design with five stimuli from the same con-

dition presented in series, with fMRI scan acquisitions interleaved (as in Exper-

iment I). Subjects performed a ‘‘1-back’’ task to helpmaintain their attention on

the sounds: in each block, four soundswere unique (i.e., different 2-second ex-

cerpts from the same condition), and one sound was an exact repetition of the

sound that came before it. Subjects were instructed to press a button after the

repeated sound.

Each ‘‘run’’ included 2 blocks per condition. The number of runs was

determined by the amount of time available in each scanning session. Five

subjects completed three runs, two subjects completed four runs, and one

subject completed two runs. All other methods details were the same as

Experiment I.

Voxel Decomposition Methods
Overview of Decomposition

We approximated the data matrix, D (165 sounds 3 11,065 voxels), as the

product of a response matrix, R (165 sounds 3 N components), and a weight

matrix, W (N components 3 11,065 voxels):

DzRW (Equation 3)

We used twomethods to factorize the datamatrix: a ‘‘non-parametric’’ algo-

rithm that searches for maximally non-Gaussian weights (quantified using a

measure of entropy) and a parametric model that maximizes the likelihood

of the data matrix given a non-Gaussian prior on voxel weights. The two

methods produced qualitatively similar results. The main text presents results

from the non-parametric algorithm, which we describe first. A MATLAB imple-

mentation of both algorithms is available on the authors’ websites, along with

all of the stimuli.

Non-Parametric Decomposition Algorithm

The non-parametric algorithm is similar to ICAalgorithms that search for compo-

nents with non-Gaussian distributions by minimizing the entropy of the weight

distribution (because the Gaussian distribution has highest entropy for a fixed

variance). The key difference between our method and standard algorithms

(e.g., ‘‘FastICA’’) is that we directly estimated entropy via a histogram method

(Moddemeijer, 1989), rather than using a ‘‘contrast function’’ designed to

approximateentropy. Forexample,many ICAalgorithmsusekurtosis asametric

for non-Gaussianity, which is useful if the latent distributions are non-Gaussian

due to their sparsity, but not if the non-Gaussianity results from skew. Directly

estimating negentropymakes it possible to detect any source of non-Gaussian-

ity. Our approach was enabled by the large number of voxels (>10,000), which

made it possible to robustly estimate entropy using a histogram.

The algorithm had two main steps. First, the data matrix was reduced in

dimensionality and whitened using PCA. Second, the whitened and reduced

data matrix was rotated to maximize negentropy (J), defined as the difference

in entropy between the empirical distribution and aGaussian distribution of the

same variance:

JðyÞ=H
!
ygauss

"
# HðyÞ (Equation 4)

The first step was implemented using singular value decomposition, which

approximates the data matrix using the top N principal components with high-

est variance:

DzUSV (Equation 5)

whereU is the responsematrix for the top N principal componentswith highest

variance (165 sounds3 N components), V is the weight matrix for these com-

ponents (N components3 11,065 voxels), and S is a diagonal matrix of singu-

lar values (N 3 N). The number of components, N, was chosen by measuring

the variance explained by different numbers of components and the accuracy

of components in predicting voxel responses in left-out data (see Supple-

mental Experimental Procedures).

In the second step, we found a rotation of the principal component weight

matrix (V from Equation 5 above) that maximized the negentropy summed

across components (Hyvärinen, 1999):

bT = argmax
T

PN

c= 1

JðW½c; :%Þ; where W=TV (Equation 6)

where W is the rotated weight matrix (N3 11,065), T is an orthonormal rotation

matrix (N3N), andW[c, :] is the cth row ofW.We estimated negentropy using a

histogram-based method (Moddemeijer, 1989) applied to the voxel weight

vector for each component (W[c, :]).

We optimized this function by iteratively selecting pairs of components and

finding the rotation that maximized their negentropy (using grid-search over all

possible rotations; see Figure S7). This pairwise optimization was repeated un-

til no rotation could further increase the negentropy. All pairwise rotations were

then combined into a single rotation matrix ðbTÞ, which we used to compute the

response profiles (R) and voxel weights (W):

R=USbT
#1

(Equation 7)

W= bTV (Equation 8)

Parametric Decomposition Model

The non-parametric algorithm just described, like many ICA algorithms, con-

strained the voxel weights to be uncorrelated, a necessary condition for inde-

pendence (Hyvärinen, 1999). Although this constraint greatly simplifies the

algorithm, it could conceivably bias the results if the neural components that

generated the data have voxel weights that are correlated. To address this

issue, we repeated all our analyses using a second algorithm that did not

constrain the weights to be uncorrelated. The algorithm placed a non-

Gaussian prior (the Gamma distribution) on the distribution of voxel weights

and searched for response profiles that maximized the likelihood of the

data, integrating across all possible weights. For computational tractability,

the prior on voxel weights was factorial. However, the posterior distribution

over voxel weights, given data, was not constrained to be independent or

uncorrelated, and could thus reflect statistical dependencies between the

component weights.

This second approach is closely related to sparse coding algorithms (Ol-

shausen and Field, 1997), which infer basis functions (components) assuming

a sparse prior on the component weights. Such methods typically assume a

fixed prior for all components. This assumption seemed suboptimal for our

purposes because the components inferred using the non-parametric algo-

rithm varied in skew/sparsity (Figure 7A). Instead, we developed an alternative

approach, which inferred a separate prior distribution for each component,

potentially accommodating different degrees of sparsity in different neural

sub-populations.

Our approach was inspired by a method developed by Liang et al., 2014 to

factorize spectrograms. The Liang et al. method was a useful starting point

because it allows the prior distribution on weights to vary across compo-

nents (see Figure S2A). Like Liang et al., we used a single-parameter Gamma

distribution to model latent variables (the weights in our case) because it can

fit many non-negative distributions depending on the shape parameter.

Unlike Liang et al., we modeled measurement noise with a Gaussian distribu-

tion rather than a Gamma because the Gaussian fit our empirical noise

estimates better. We also used a different algorithm to optimize the model

(stochastic Expectation-Maximization) (Dempster et al., 1977; Wei and
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Tanner, 1990), which we found to be more accurate when tested on simu-

lated data. The mathematical details of the model and the optimization algo-

rithm used to infer components are described in Supplemental Experimental

Procedures.

Analyses of Component Response Properties and Anatomy
Component Voxel Weight Anatomy

We averaged voxel weights across subjects in standardized anatomical coor-

dinates (FreeSurfer’s FsAverage template) (Figure 2B). Voxel weights were

smoothed with a 5mm FWHMkernel on the cortical surface prior to averaging.

Voxels without a reliable response pattern to the sound set, after averaging

across the ten subjects tested, were excluded. The inclusion criteria were

the same as that used to select voxels from individual subjects. We trans-

formed these average weight maps into a map of statistical significance using

a permutation test across the sound set (Nichols and Holmes, 2002) (see Sup-

plemental Experimental Procedures).

To verify that the weight maps weremore similar across subjects than would

be expected by chance, wemeasured the average correlation betweenweight

maps across all pairs of subjects for the same component. We compared this

correlation with a null distribution generated by randomly permuting the corre-

spondence between components across subjects (10,000 permutations).

To test for laterality effects, we compared the average voxel weight for each

component in the left and right hemisphere of each subject (Figure S4) using a

paired t test across subjects.

Sound Category Assignments

In an online experiment, Mechanical Turk participants chose the category that

best described each sound, and we assigned each sound to its most

frequently chosen category (30–33 participants per sound) (Figures 2D and

2E). Category assignments were highly reliable (split-half kappa = 0.93).

Acoustic Features

Cochleograms were measured using a bank of band-pass filters (McDermott

and Simoncelli, 2011), similar to a gammatone filter bank (Slaney, 1998) (Fig-

ure 3A). There were 120 filters spaced equally on an ERBN scale between

20 Hz and 10 kHz (87.5% overlap, half-cycle cosine frequency response).

Each filter was intended to model the response of a different point along the

basilar membrane. Acoustic measurements were computed from the enve-

lopes of these filter responses (the magnitude of the analytic signal, raised

to the 0.3 power to model cochlear compression).

Because voxels were represented by their average response to each sound,

we used summary acoustic measures, averaged across the duration of each

sound, to predict component response profiles. For each feature, we corre-

lated a vector of acoustic measures with the response profile of each compo-

nent. To estimate the variance explained by sets of acoustic features, we

regressed sets of feature vectors against the response profile of each compo-

nent (see Supplemental Experimental Procedures). Both correlations and vari-

ance-explained estimates were corrected for noise in fMRI measurements

(see Supplemental Experimental Procedures).

As a measure of audio frequency, we averaged cochlear envelopes over the

2-second duration of each sound. Because the frequency tuning of voxels is

broad relative to cochlear filters (e.g., Humphries et al., 2010), we summed

these frequency measures within six octave-spaced frequency ranges

(centered on 200, 400, 800, 1,600, 3,200, and 6,400 Hz). The frequency ranges

were non-overlapping, and the lowest and highest bands were lowpass and

highpass, respectively. We measured the amount of energy in each frequency

band for each sound, after subtracting the mean for each sound across the six

bands. This demeaned vector was then correlated with the response profile for

each component (Figure 3B).

We used a spectrotemporal modulation filter bank (Chi et al., 2005) to mea-

sure the energy at different temporal ‘‘rates’’ (in Hz) and spectral ‘‘scales’’ (in

cycles per octave) for each sound. The filter bank crossed nine octave-spaced

rates (0.5–128 Hz) with seven octave-spaced scales (0.125–8 cyc/oct). Each

filter was complex-valued (real and imaginary parts were in quadrature phase).

Cochleograms were zero-padded (2 seconds) prior to convolution with each

filter. For each rate/scale, we correlated the average magnitude of the filter

response for each sound with the component response profiles (Figure 3C) af-

ter partialling out correlations with the audio frequency measures just

described. We averaged the magnitude of ‘‘negative’’ and ‘‘positive’’ temporal

rates (i.e., left and right quadrants of the 2D Fourier Transform), because their

pattern of correlations was very similar. Temporal modulation was computed

from the same model (Chi et al., 2005) using filters modulated in time, but not

frequency.

We used a permutation test to assess whether the correlation values across

a set of acoustic measures differed significantly (Figures 3B and 3C). As in a

one-way ANOVA, the variance of the correlation across a set of acoustic mea-

sures was compared with that for a null distribution (here computed by

permuting the mapping between acoustic features and response profiles).

Measuring Component Responses to Scrambled Speech and Music

Weused the pseudoinverse of the component voxel weights from Experiment I

(WExpI) to estimate the response of each component to the stimulus conditions

from Experiment II (RExpII) (Figure 4):

RExpII =DExpIIW
T
ExpI

!
WExpIW

T
ExpI

"!1

(Equation 9)

where DExpII is a matrix containing the response of each voxel to each condi-

tion from Experiment II. We measured component responses separately for

each of the eight subjects and used ANOVAs and t tests to evaluate

significance.

Identifying Music- and Speech-Selective Voxels

We identified music-selective voxels by contrasting responses to music and

non-music sounds (Figure 5) using regression with a binary category vector

on data from scan 1. To control for correlations with acoustic measures, we

included our acoustic feature vectors (see above) as nuisance regressors.

We then selected the 10% of voxels from each subject with the most signifi-

cant regression weight for themusic versus non-music contrast, measured us-

ing ordinary least-squares. Similar results were obtained using different

thresholds (5% or 15%). Voxel responses were then measured using data

from scans 2 and 3. The same analysis was used to identify speech voxels,

by contrasting responses to speech and non-speech sounds (Figure S6).

Component Overlap within Voxels

To calculate the normalized voxel weights plotted in Figure 6A, we standard-

ized the response profiles to have the same units by setting the variance of

each profile to 1. Both the response profiles and voxels were demeaned so

that the overall response of each voxel to the sound set would not affect its

relative selectivity for different components. We then regressed the compo-

nent response profiles against the voxel responses and averaged these

regression weights across subjects (in standardized anatomical coordinates).

Finally, the regression weights for each component were normalized by the

sum of the absolute weights for all six components (separately for each voxel):

uiP6
j = 1

##uj

## : (Equation 10)

We note that variability in the anatomical distribution of components across

subjects could lead to lower selectivity values; to mitigate this concern, we

also quantified selectivity in voxels from individual subjects (Figure 6B). Specif-

ically, we (1) ranked voxels from each subject by their weight along a single

component, (2) selected the top N%of voxels from this list (varying N), (3) aver-

aged component weights (for all six components) across the selected voxels

and across subjects (in that order), and (4) normalized these average weights

using Equation 10. Error bars were computed via bootstrapping across the

sound set (Efron and Efron, 1982).

To avoid statistical bias/circularity in this procedure, the data used to select

voxels was independent of that used to measure their component weights.

Data from the first two scans of each subject was used to infer components

and select voxels with high weight for a single component. We selected voxels

using a measure of the significance of their weights (p values from the permu-

tation test described above). Data from a third, independent scan was then

used to estimate component weights in the selected voxels.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and seven figures and can be found with this article online at http://dx.doi.

org/10.1016/j.neuron.2015.11.035.
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SUPPLEMENTAL FIGURES 
 

 
 
Figure S1. Voxel Prediction Accuracy vs. Number of Components 
Related to Main Figure 1C 
Accuracy of the component model in predicting voxel responses measured from left-out data not used to fit 
the model, as a function of the number of components used (see Supplemental Methods). The figure plots 
the median correlation between the measured and predicted response across voxels (averaged across 
subjects). Components driven by reliable variance will improve prediction accuracy, while components 
driven by noise will degrade the performance, due to over-fitting. Best performance was achieved using a 
model with 6 components. Error bars plot one standard error of the mean across subjects. 
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Figure S2. Parametric Component Model  
Related to Main Figure 2 
(A) Model schematic: each voxel was modeled as the weighted sum of a set of response profiles (r1, r2, r3, 
…) with a Gamma-distributed prior on the voxel weights (w1, w2, w3, …). The Gamma distribution constrains 
the weights to be positive and can model distributions with variable skewness/sparsity depending on the 
shape parameter (�). Because of the positivity constraint, the weights could be interpreted as reflecting the 
proportion of different neuronal populations present in each voxel. Components were discovered by finding 
response profiles and shape parameters that maximized the likelihood of the data, integrating across all 
possible voxel weights.  
(B) Component voxel weights averaged across subjects after aligning their brains to a standardized 
anatomical template (same format as Figure 2B). 
(C) Response profiles discovered using the parametric algorithm (same format as Figure 2D). The 
correlation coefficient for the best-matching profile from the non-parametric algorithm is shown. Each 
component discovered by the parametric algorithm was similar in both its voxel weights and response profile 
to a single, unique component from the non-parametric algorithm.  
(D) Component responses averaged across sounds with the same category assignment (same format as 
Figure 2E). 
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Figure S3. Component Voxel Weights from Individual Subjects 
Related to Main Figure 2B 
(A) Tonotopic maps, measured with pure tones, from 4 individual subjects that participated in an extra scan 
session to more robustly measure tonotopy in their individual brains. Colors indicate which of six different 
frequency ranges best drove each voxel’s response. Each subject exhibited two mirror-symmetric maps, 
characteristic of primary auditory cortex. High- and low-frequency regions of primary auditory cortex are 
outlined with white and black outlines, respectively.  
(B) Component voxel weight maps from these same four subjects, with outlines of high- and low-frequency 
primary regions overlaid. Maps plot a measure of significance for each component and voxel (logarithmically 
transformed p-values, calculated via a permutation test). Color scales show the central 95% of the p-value 
distribution for each component. 



! !

 
 
Figure S4. Laterality of Component Voxel Weights 
Related to Main Figure 2B 
The average difference in voxel weights between the right and left hemisphere for all six components. 
Circles correspond to individual subjects. Box plots show medians and the central 50% of the distribution for 
each component.  
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Figure S5. Component Response Profile Reliability  
Related to Main Figure 2D 
(A) Components were inferred using a subset of the data (scans 1 and 2), and their response profiles were 
re-estimated using the left-out data (scan 3) (see Supplemental Methods). Each circle plots the response of 
one component to a single sound, measured in each of the two data sets. The circles are colored based on 
the category of each sound. The test-retest correlation for each component is indicated. 
(B) Components were inferred using a smaller sound set, randomly selected from the full 165-sound set. 
The components discovered from the reduced sound set were matched and correlated with those 
discovered using the full sound set. The figure plots the median and standard error of this correlation across 
all reduced sets of a given size.  
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Figure S6. Analyses of Speech-
Selectivity in Raw Voxels 
Related to Main Figure 5.  
(A) Left panel plots the average 
response profile of voxels with the 
most significant response preference 
for speech sounds. The response 
profile of Component 5, which 
responded selectively to speech 
sounds, is re-plotted for comparison 
(right panel).  
(B) The amount of response variance 
explainable by acoustic features, 
category labels, and the combination 
of both acoustic and category 
measures for speech-selective 
voxels and Component 5. Both the 
speech-selective voxels and the 
Component showed robust 
selectivity for categories that could 
not be explained by acoustic features 
(in contrast with the pattern observed 
for music-selective voxels, see 
Figure 5B). Error bars plot standard 
errors across the sound set, 
estimated via bootstrap.  
(C) The effect of audio scrambling on 
the response of the speech-selective 
voxels and Component 5. Effects of 
scrambling were stronger in the 
Component, but remained robust in 
speech-selective voxels. Error bars 
plot one standard error of the mean 
across subjects. 
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Figure S7. Testing Assumptions of Non-Gaussianity 
Related to Main Figure 7 
The algorithm used to discover components iteratively “rotated” pairs of principal components to maximize a 
measure of non-Gaussianity (“negentropy”). This approach is ineffective if the weights for the “true” latent 
components are Gaussian-distributed, because the Gaussian distribution is rotationally symmetric. The left 
panel illustrates this fact by plotting a measure of negentropy as a function of rotation for pairs of principal 
components measured from synthetic Gaussian data. In contrast, the principal components measured from 
the voxels were not rotationally symmetric (middle panel), and we could thus increase their negentropy via 
rotation. By iterating this process, our algorithm was able to discover a clear optimum, such that no 
additional rotation could increase the negentropy of the weights (right panel).  
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 
 
Data Acquisition and Preprocessing 
Data were collected on a 3T Siemens Trio scanner with a 32-channel head coil (at the 
Athinoula A. Martinos Imaging Center of the McGovern Institute for Brain Research at MIT). 
The functional volumes were designed to provide good spatial resolution in auditory cortex. 
Each functional volume (i.e. a single 3D image) included 15 slices oriented parallel to the 
superior temporal plane and covering the portion of the temporal lobe superior to and 
including the superior temporal sulcus (3.4 s TR, 30 ms TE, 90 degree flip angle; 5 discarded 
initial acquisitions). Each slice was 4 mm thick and had an in-plane resolution of 2.1 x 2.1 mm 
(96 x 96 matrix, 0.4 mm slice gap). iPAT was used to minimize acquisition time (1 
sec/volume). T1-weighted anatomical images were also collected for each subject (1 mm 
isotropic voxels). 
 Functional volumes were preprocessed using FSL software and custom MATLAB 
scripts. Volumes were motion-corrected, slice-time-corrected, skull-stripped, linearly 
detrended, and aligned to the anatomical volumes (using FLIRT and BBRegister; Greve and 
Fischl, 2009; Jenkinson and Smith, 2001). Volume data were then resampled to the 
reconstructed cortical surface computed by FreeSurfer (Dale et al., 1999), and smoothed 
using a 3mm FWHM kernel to improve SNR.  
 
Measurement of Tonotopy 
We measured tonotopy using responses to pure tones from one of six frequency ranges 
(center frequencies: 200, 400, 800, 1600, 3200, and 6400 Hz; Humphries et al., 2010; 
Norman-Haignere et al., 2013). We measured the frequency range that produced the 
maximum response in voxels significantly modulated by frequency (p < 0.05 in a 1-way 
ANOVA across the 6 ranges). These best-frequency maps were averaged across subjects to 
form group maps. Voxels in which fewer than three subjects had frequency-modulated voxels 
were excluded from the group map. 
 
Additional Details of the Non-Parametric Decomposition Algorithm 
 
Assessing Convergence 
The non-parametric algorithm is guaranteed to reach a local optimum, since it continues until 
no “rotation” can further improve the objective. To ensure the optimization procedure found 
the global optimum, we applied the algorithm 1000 times with different random initializations 
(random rotations of the principal component weight matrix, VN). We then correlated the 
response profiles of the best solution (highest negentropy) with the response profiles from all 
other initializations (after matching the response profiles via the ‘Hungarian’ algorithm; Kuhn, 
1955). For the 500 solutions with highest negentropy, this correlation was very high (average 
r > 0.99), indicating that the best solution was likely a global optimum.  
 
De-Meaning 
As is standard in ICA algorithms (Hyvarinen, 1999), the rows of the data matrix were 
demeaned prior to applying the non-parametric algorithm: for each sound, the mean 
response across voxels was subtracted from the response of each voxel. This demeaning 
operation causes the rows of the inferred voxel weight matrix to also be zero mean, but does 
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not change the response profile matrix. As a result, the voxel weights needed to explain the 
original non-demeaned data matrix can be recovered by applying the pseudoinverse of the 
response matrix: 
 
   (11) 

  
where R is the inferred response profile matrix, D is the non-demeaned data matrix, and W is 
the component weight matrix. 
 In practice, we found it useful to demean voxels from each subject separately. Without 
this step, the algorithm discovered additional components that just reflected the difference or 
“offset” between the average response of voxels from a single subject and the average voxel 
response across all subjects. These “offset vectors” were generally not reliable across scan 
sessions, and were plausibly driven by correlated sources of noise across voxels (e.g. due to 
motion).   
 
Determining the Sign of the Components 
The “sign” of the response profiles and weights is not uniquely determined by the algorithm, 
since they can be flipped without changing the solution: 
 
   (12) 

 
In practice, each inferred component could be oriented such that its average response and 
voxel weight were both positive. We used this convention in all of the Figures.  
 
Determining the Number of Components 
Voxel decomposition can in principle recover as many components as generated the data, 
but in practice is limited by the SNR of fMRI measurements. To determine the number of 
components to analyze, we measured (1) the amount of replicable variance accounted for by 
the components (Figure 1C) and (2) the accuracy of the components in predicting voxel 
responses from a left-out subject, not used to identify components (Figure S1). The first 
measure estimates the fraction of voxel response variation the components would explain if 
fMRI responses were perfectly reliable. The second measure, by contrast, is sensitive to the 
relative contribution of replicable vs. non-replicable sources in driving each component, since 
only components driven by replicable variance should improve prediction accuracy. We 
sought to find a set of N components that explained a large fraction of the explainable 
variance (measure 1) while maintaining good prediction accuracy (measure 2).  
 In the absence of noise, the amount of replicable variance (measure 1) can be 
computed by correlating the response of each voxel with its response projected onto the 
components. In the presence of noise, this correlation needs to be corrected by the reliability 
of the voxel and component-projected responses measured in independent scans. We did 
this as follows. First, we projected the response of each voxel, measured in two different 
scans (vscan1 and vscan2), onto component response profiles inferred using data from all other 
subjects (R): 
 
   (13) 

 

W = (RTR)�1RTD

RW = (�R)(�W)

vscan1�proj = R(RTR)�1RTvscan1
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   (14) 
 
We then correlated voxel responses from one scan with the component-projected responses 
from the other scan, and Z-averaged the two correlation values:  
 
   (15) 

 
   (16) 

 
   (17) 

 
Z-averaging reduces a small bias caused by directly averaging correlation coefficients (Silver 
and Dunlap, 1987). We noise-corrected this correlation measure by the reliability of the 
variables used to compute it (measure 1): 
 
   (18) 

 
   (19) 

 
   (20) 

 
Figure 1C plots the median of this correlation measure (equation 18) across voxels, squared 
to provide an estimate of explained variance.  
 Measure 2 is given by equation 17: the correlation between voxel responses and 
component-projected responses measured in different scans, not corrected for noise (Figure 
S1). Because the measure is not corrected, adding components does not monotonically 
increase prediction accuracy because higher-order components are eventually driven more 
by noise than replicable signal. 
 
Additional Details of Parametric Decomposition Model 
  
Model Specification 
The model assigned a probability to each voxel’s response, given a set of component 
response profiles and a Gamma-distributed prior on component voxel weights. In the 
equations below: 

• Lower-case, bolded symbols denote vectors 
• Upper-case bolded symbols denote matrices 
• Unbolded symbols denote scalars 

  

⇢(1)N = Corr(vscan1�proj

N ,vscan2

)

⇢(2)N = Corr(vscan2�proj

N ,vscan1

)

⇢N = Z(⇢(1)N , ⇢(2)N )

= tanh
h1
2

2X

i=1

tanh�1⇢(i)N

i

⇢normN =
⇢Nq
r(1)N r(2)N

r(1)N = Corr(vscan1
N ,vscan2

N )

r(2)N = Corr(vscan1�proj

N ,vscan2�proj

N )

vscan2�proj = R(RTR)�1RTvscan2
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The Gamma prior on weights took the following form:  
  
    

(21) 

 
where N is the number of components, wc,i is the weight for component c in voxel i, and �c is 
the shape parameter of the Gamma distribution for component c.  
 Given a set of response profiles and weights, we modeled the likelihood of observing 
each voxel’s response as a diagonal Gaussian, with mean centered on the weighted sum of 
the response profiles: 
 
   (22) 

 
where vi,j denotes the response vector of voxel i measured in scan j and R is the response 
profile matrix [165 x N].  
 The variance (�i

 2) for each voxel was set to its empirical variance across scans: 
 
   (23) 

 
where Mi indicates the number of measurements/scans for voxel i (2 or 3 depending on the 
subject), and S the total number of stimuli (165).  
 The log-likelihood of the data integrating across all possible weights is then given by: 
 
    

(24) 

 
where {vi,j} indicates the set of all voxel responses across all subjects and scans, and V is the 
total number of voxels. The response matrix (R) and shape parameters (�) were chosen to 
maximize this log-likelihood via the optimization procedure described below.  
 
Model Optimization 
The data log-likelihood (equation 24) cannot be computed in closed form because the prior 
(equation 21) and likelihood distributions (equation 22) are not conjugate (Murphy, 2012). We 
therefore optimized the model using a stochastic variant of the standard expectation-
maximization (EM) algorithm (Dempster et al., 1977; Wei and Tanner, 1990). The EM 
algorithm takes advantage of the fact that the logarithm of the joint distribution over the data 
and latent parameters (equation 25 below) - in our case the voxel weights - is often easier to 
compute than the data log-likelihood (equation 24), which requires integrating across the 
latent parameters. 
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EM computes an expectation of the log-joint probability with respect to the posterior 
distribution over the latent parameters (voxel weights), and this expectation is iteratively 
maximized with respect to the hyper-parameters - in this case, the response profiles (R) and 
shape parameters (�):  
 
 (26) 

 
The posterior distribution over the voxel weights is computed with respect to a fixed set of 
hyper-parameters (Rfixed, � fixed), and the expectation is then maximized with respect to the 
hyper-parameters of the joint distribution (R, �). The posterior over voxel weights is then re-
computed using the new hyper-parameters (Rfixed = Rnew, � fixed = �new), and the process is 
repeated.  
 The expectation in equation 26 can be expanded using equations 21 and 22. It 
includes many terms, but only three quantities depend on the posterior weight distribution 
over which the expectation is computed: the first two moments of the voxel weights (E[wc,i] 
and E[wl,i wm,i]) and the expectation of the log-transformed voxel weights (E[log wc,i]): 
 

   (27) 

 
These three statistics also cannot be computed in closed form (because like the data log-
likelihood, they require an intractable integral over voxel weights). We estimated them using 
“importance-weighted” samples from an approximating Gaussian distribution (Bishop and 
others, 2006). This was accomplished in five steps. First we log-transformed the voxel 
weights, so that the distribution being sampled from had support everywhere (unlike the un-
transformed weights which were non-negative due to the Gamma prior):  
 
   (28) 

 
   (29) 

 
Second, we approximated the posterior distribution over log-weights with a Gaussian 
centered at the maximum of the distribution (zimax, computed using Newton’s method) and 
covariance matrix set to:  
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   (30) 
 
   (31) 

 
where Hi is the Hessian of the log-posterior over log-weights at the maximum (i.e. the 
“Laplace approximation”) (Murphy, 2012). Third, we sampled a set of N values from the 
approximating Gaussian (zi(n) ~ Gi) and exponentiated the samples (wi

(n) = ezi(n)) to undo the 
effect of the log-transformation. Fourth, for each sample, we computed an “importance 
weight” (q(zi(n))), proportional to the ratio of the true posterior and approximating Gaussian: 
 
   (32) 

 
Fifth and finally, we used the sampled voxel weights (wi

(n)) and the importance weights 
(q(zi(n))) to approximate the 3 required statistics:  
 
   (33) 

 
   (34) 

 
   (35) 

 
As the number of samples (N) increases, these sums converge to the true statistics of the 
posterior (Wei and Tanner, 1990). 
 Using our estimates of these 3 statistics, we maximized the objective in equation 26 
with respect to the response matrix (R) and shape parameters (�). The maximum-likelihood 
solution for the response matrix was computed in closed form using weighted least squares: 
 
   (36) 
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The optimization with respect to the shape parameters was performed using MATLAB’s 
implementation of BFGS (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970), a 
quasi-Newton method.  
 
Subject Offsets 
As in the non-parametric method, we found it was useful to subtract a subject-specific “offset” 
vector from the response of each voxel (see “De-Meaning” section above). We used our 
model to infer an optimal offset vector (os), one per subject, that maximized the likelihood of 
the data (using weighted least-squares). The voxel responses (vi,j) in all other equations were 
then replaced with “offset” voxel responses:  
 
   (39) 

 
where s(i) denotes the subject for voxel i.  
 
Assessing and Improving Global Convergence 
The EM algorithm is guaranteed to converge to a local, but not a global optimum. In practice, 
we found that applying the EM algorithm in an iterative manner improved global convergence. 
First, we initialized the component response profiles with the response of randomly selected 
voxels projected onto the first N principal components (ensuring that the response profiles 
started near regions of high response variance). The initial values of the shape parameters 
had little effect on the optimization and were fixed (βc = 1). Subject offset vectors were 
initialized to the average response difference (or ‘offset’) between the voxels of a single 
subject and the voxels of all ten subjects. Second, the algorithm was run for 10 EM iterations, 
using 100 samples to approximate the posterior statistics (equations 33-35). Third, two of the 
response profiles were randomly re-initialized (using two more randomly selected voxels), 
and another 10 iterations were run. Fourth, we compared likelihood estimates (described 
below) for the solutions found before and after re-initialization, and kept the solution with 
highest likelihood. We repeated steps 3-4, randomly re-initializing response profiles for all 
pairs of components ten times. The resulting solution was then further refined using 200 EM 
iterations with 1000 samples per iteration. 
 To evaluate convergence, this entire process was repeated 200 times. We then 
correlated the response profiles for the solution with highest estimated likelihood with the 
response profiles for all other solutions (after matching them using the Hungarian algorithm). 
Of the top 100 solutions with the highest likelihood, the average correlation was 0.98, 
indicating that the algorithm converged to a stable solution across different initializations. 
 
Likelihood Estimates 
We estimated the likelihood of the data given parameters in two steps. First, we 
approximated the posterior distribution over log-transformed weights with a Gaussian (as 
described above). Second, we used importance-weighted samples from the Gaussian to 
directly approximate the log-likelihood of the data:  
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where Gi is the approximating Gaussian for voxel i, and wi

(n) is a sample from that Gaussian. 
We used 1000 samples per voxel to approximate the integral. Although stochastic, the log-
likelihood estimates were highly stable across independent sets of samples. 
 
Additional Analyses of Component Response Properties and Anatomy 
 
Statistical Significance of Weight Maps 
We computed significance for the component voxel weights via a permutation test (Figures 
2B, S2, & S3). Specifically, we computed a null distribution for each component by 
permuting/shuffling its response profile 10,000 times and re-computing the component 
weights for all voxels. To avoid changing the correlation between response profiles of 
different components, we permuted response variation unique to that component (i.e. the 
residual after removing shared variance). Results were similar permuting the raw profile. We 
fit the null distribution for each component and voxel with a Gaussian, and calculated the 
likelihood of obtaining the observed component weight (based on the un-permuted profile), 
given a sample from this Gaussian.   
 
Variance Explained by Acoustic Features and Category Labels 
We estimated the variance explained by different sets of acoustic features by regressing 
them against the response profile of each component (Figures 3D&E). Each set of features 
(audio frequency, temporal modulation, and spectrotemporal modulation) was defined by a 
165 x N matrix, with one vector per feature: six for audio frequency, nine for temporal 
modulation and 49 for spectrotemporal modulation (7 scales x 9 rates). Because the 
spectrotemporal matrix was relatively high dimensional, and its features highly correlated, we 
reduced its dimensionality by selecting the top 15 principal components (accounting for 95% 
of the total variation). For the temporal and spectrotemporal feature matrices we included the 
mean energy vector across frequency as an additional predictor, because variation in mean 
energy was driven by modulation (due to RMS normalization of stimuli in conjunction with 
power compression).  
 We regressed category judgments against the response profile of each component to 
measure the variance they explained. Category judgments were represented by a matrix (165 
x 11) containing the proportion of subjects that assigned each category to each sound (this 
matrix was reliable across participants; split-half correlation of 0.98). To measure the variance 
explained by acoustic features and categories, we concatenated the acoustic and category 
feature matrices. 
 To avoid over-fitting, we predicted the response to each sound using regression 
weights estimated using all other sounds. We correlated the resulting prediction vector with 
the response profile of each component, normalized by the reliability of the measures (see 
below), and squared it to estimate variance explained. Error bars on these estimates were 
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computed via bootstrapping: sampling with replacement across the sound set (10,000 
samples), and re-computing the correlation between the acoustic feature predictions and the 
component response profile. Statistical significance was determined using a null distribution 
obtained by permuting the rows of the feature matrices and re-computing the correlation with 
the component profile (10,000 permutations). 
 
Correlation Normalization to Correct for Measurement Noise 
For the acoustic correlation values plotted in Figures 3B and 3C, we noise-corrected the 
correlation between acoustic feature vectors and component response profiles by the test-
retest reliability of the profiles across scans:  
 
   (41) 

 
   (42) 

 
where r1 and r2 indicate estimates of each component’s response vector measured in two 
different scans, and s is a vector of stimulus features. Z-averaging was again used to reduce 
a small bias caused by directly averaging correlation coefficients (Silver and Dunlap, 1987). r1 
and r2 were computed by projecting the voxel responses from the first scan, D1, onto the 
component response profile matrix, R, and then using the resulting voxel weights, W1, to re-
estimate the response profiles from voxel responses measured in scans 2 and 3 (D2 and D3):  

   (43) 
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   (45) 
 
Note that these estimates are not fully independent, since the response profile matrix R was 
computed from all of the data. However, the effect of any non-independence will be to make 
the normalized correlations smaller (because the test-retest correlation will be higher), and 
our measures thus provide a conservative estimate of the correlation between stimulus 
predictors and component response profiles. We adopted this method because the 
component analysis is more reliable with three scans worth of data compared with a single 
scan, producing a more robust R matrix. 
 For the regression analyses used to estimate explained variance (Figures 3D&E, 5B 
and S6B), we corrected for the reliability of both the component response profiles and the 
prediction vectors (necessary because the predictions depend on the response profiles, and 
thus are subject to effects of fMRI noise):  
 

⇢ =

Z(Corr(s, r1),Corr(s, r2))p
Corr(r1, r2)

Z(⇢1, ⇢2) = tanh
h1
2

2X

i=1

tanh�1⇢i
i

W1 = (RTR)�1RTD1

R1 = D2W
T
1 (W1W

T
1 )

�1

R2 = D3W
T
1 (W1W

T
1 )

�1



! !

   (46) 

 
In these equations, p1 and p2 indicate prediction vectors estimated by regressing feature 
matrices against the two response profiles, r1 and r2. We used the square of this normalized 
correlation as a measure of explained variance. 
 
Component Response Profile Reliability Across Scans 
We tested the reliability of each response profile by inferring components using data from the 
first two scans of each subject, and then re-estimating their response profiles using data from 
a third scan (Figure S5A). The response profiles were re-estimated by multiplying the voxel 
responses measured in scan 3 (D3) by the pseudoinverse of the component weights from 
scans 1 and 2 (W12): 
 
   (47) 

 
Sensitivity of Component Response Profiles to the Sounds Tested 
We investigated the sensitivity of the discovered response profiles to the specific sounds 
tested by re-running the analysis on subsets of sounds (Figure S5B). Each subset contained 
M unique, randomly chosen sounds (M varied from 10 to 160 sounds, in steps of 10). For 
each subset, we used the non-parametric algorithm to infer six components that best 
modeled the reduced data matrix (formed from the reduced sound set). We then compared 
the response profiles inferred from the reduced sound set to those discovered using all 165 
sounds, by matching (via the Hungarian algorithm) and correlating their response profiles 
(using just the sounds from the reduced set). This process was repeated 200 times per set 
size (with different subsampled sound sets). Figure S5B plots the median correlation value for 
each component across the 200 samples, as a function of the set size.  
 
Testing Assumptions of Non-Gaussianity   
We tested whether the inferred voxel weights were more skewed (sc) and kurtotic (kc) than 
would be expected from a Gaussian distribution (Figure 7A):  
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wi,c indicates the weight for component c in voxel i, and N is the total number of voxels. Voxel 
weights were also fit with two parametric distributions: a Gaussian distribution and non-
Gaussian ‘Johnson’ distribution (Figure 7B), obtained by transforming a Gaussian-distributed 
random variable (g) via the hyperbolic sine function (Johnson, 1949):  
 
   (52) 

 
 We also directly compared the non-Gaussianity (via negentropy) of principled 
components with the non-Gaussianity of components inferred by our non-parametric 
algorithm, which rotated principle components to maximize non-Gaussianity (Figure S7). If 
the underlying components are Gaussian, then the voxel weights for each principal 
component would also be Gaussian, and would remain so following any rotation (because 
whitened Gaussians are rotationally symmetric) (Murphy, 2012).  
 For all of the analyses of non-Gaussianity, we used independent data to infer 
components (scans 1 and 2) and measure their statistical properties (scan 3). Bootstrapping 
across subjects was used to assess significance. 
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