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Significance

 Noise is ubiquitous in the 
auditory world, and human 
hearing is remarkably robust to 
its presence. The standard 
explanation for this robustness 
involves adaptation to 
components of the auditory 
input that are stable over time, 
accentuating time-varying signals 
at the expense of static “noise” 
signals. Here, we show several 
properties of human noise 
robustness that are inconsistent 
with such a simple explanation. 
The results are instead consistent 
with the idea that the auditory 
system estimates the properties 
of noises it encounters and then 
stores them over time, using the 
resulting internal model to 
estimate other concurrent 
sounds.
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Human hearing is robust to noise, but the basis of this robustness is poorly under-
stood. Several lines of evidence are consistent with the idea that the auditory system 
adapts to sound components that are stable over time, potentially achieving noise 
robustness by suppressing noise- like signals. Yet background noise often provides 
behaviorally relevant information about the environment and thus seems unlikely 
to be completely discarded by the auditory system. Motivated by this observation, 
we explored whether noise robustness might instead be mediated by internal mod-
els of noise structure that could facilitate the separation of background noise from 
other sounds. We found that detection, recognition, and localization in real- world 
background noise were better for foreground sounds positioned later in a noise 
excerpt, with performance improving over the initial second of exposure to a noise. 
These results are consistent with both adaptation- based and model- based accounts 
(adaptation increases over time and online noise estimation should benefit from 
acquiring more samples). However, performance was also robust to interruptions in 
the background noise and was enhanced for intermittently recurring backgrounds, 
neither of which would be expected from known forms of adaptation. Additionally, 
the performance benefit observed for foreground sounds occurring later within a 
noise excerpt was reduced for recurring noises, suggesting that a noise representa-
tion is built up during exposure to a new background noise and then maintained 
in memory. These findings suggest that noise robustness is supported by internal 
models—“noise schemas”—that are rapidly estimated, stored over time, and used 
to estimate other concurrent sounds.

auditory scene analysis | hearing in noise | sound texture

 Much of the everyday listening experience is distorted by noise. Although noisy environ-
ments present a challenge for hearing, human listening abilities are remarkably robust to 
noise, enabling us to converse over the hum of a restaurant or recognize sounds on a windy 
day. However, the ability to hear in noise is vulnerable, declining with age ( 1 ,  2 ) and 
following hearing loss ( 1 ,  3 ). Understanding the basis of noise-robust hearing and its 
malfunction is thus a central goal of auditory research.

 Noise robustness has been well documented in humans. For instance, speech intelligi-
bility falls off gradually with signal-to-noise ratio (SNR), but remains high even when 
background noise has comparable power to a concurrent speech signal ( 4 ). Additionally, 
some types of sounds are easier to hear in noise than others ( 5 ), and hearing is more robust 
to some types of noise than others ( 6       – 10 ). Moreover, neural correlates to this robustness 
have been discovered along the ascending auditory pathway of multiple species ( 11                 – 20 ). 
Yet, despite recent interest in the factors that enable and constrain hearing in noise, the 
problem is not well understood in computational terms.

 A common view is that the auditory system filters out or suppresses noise in order to 
recognize sources of interest. One possibility is that the brain has internalized typical 
properties of noise and, by default, suppresses them relative to the properties of other 
sound sources ( 9 ,  12 ,  17 ). For instance, because noise is often approximately stationary 
(i.e., being defined by statistical properties that are relatively constant over time), the 
auditory system could preferentially suppress stationary sounds, which might enable more 
robust recognition of other sounds in noise. We refer to this hypothesis as “fixed noise 
suppression,” the idea being that there are fixed filters that attenuate noise-like sounds 
( Fig. 1A  ). Another possibility is that noise properties are implicitly detected and suppressed 
via local adaptation mechanisms that reduce the response to features that are relatively 
constant in the auditory input ( 13 ,  14 ,  16 ,  18 ,  21   – 23 ). We refer to this hypothesis as 
“adaptive noise suppression” ( Fig. 1B  ). While adaptive mechanisms can account for some 
of the observed neural responses to stimuli in noise, such proposals have primarily been 
evaluated with simple synthetic noise signals, leaving it unclear whether they explain 
robustness to noise sources containing the rich statistical structure present in natural 
environments ( 24 ).        
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 An alternative possibility is that the auditory system might 
actively model the statistical structure of noise ( Fig. 1C  ). This idea 
derives some a priori plausibility from the potential of background 
noise to convey useful information. Although laboratory studies 
of hearing in noise tend to use a single type of unstructured syn-
thetic noise (e.g., white noise or pink noise), “noise” in the world 
can vary dramatically from place to place, often providing behav-
iorally relevant information about the environment ( 25 ,  26 ), such 
as the intensity of rain or wind. Such real-world noises are com-
monly referred to as auditory textures ( 24 ,  27 ). Auditory textures 
are typically generated by superpositions of many similar acoustic 
events and can exhibit a diversity of statistical properties ( 24 ). 
Moreover, human listeners are sensitive to statistical regularities 
of textures ( 24 ,  28       – 32 ) and estimate and represent their properties 
even in the presence of other sounds ( 33 ,  34 ). These considerations 
raise the possibility that rather than simply suppressing noise, the 
auditory system might model its statistical structure, using the 
resulting model to aid the separation of noise from other sound 
sources akin to how “schemas” are thought to aid the segregation 
of familiar words and melodies ( 35   – 37 ). Thus, there are at least 
three potential explanations for noise-robust hearing: fixed noise 
suppression, adaptive noise suppression, and the internal modeling 
of noise schemas.

 We sought to test these three candidate explanations for 
noise-robust hearing and assess their role in everyday hearing. 
Adaptive suppression and internal noise modeling both predict 
that the ability to hear in noise should improve following the onset 
of a noise source: adaptation should grow over time, and a noise 
model should be more accurately estimated with larger samples. 
Such temporal effects have been documented in a few tasks ( 38 ) 
including pure tone detection (classically termed “overshoot”) ( 39 , 
 40 ), amplitude modulation detection ( 41 ), phoneme recognition 
( 18 ,  42 ), and word recognition ( 43 ,  44 ). However, because much 
of this work was conducted using relatively unstructured synthetic 
noise, it was unclear whether such temporal effects might be 

observed in more natural contexts (e.g., with realistic noise that 
is not fixed throughout a listening session). We thus began by 
characterizing listeners’ ability to detect, recognize, and localize 
natural foreground sounds embedded in real-world back-
ground noise.

 Although adaptive suppression and internal noise modeling are 
not necessarily mutually exclusive (Discussion ), they could be dif-
ferentiated via the time course of their effects. Specifically, neural 
adaptation in the auditory system typically dissipates fairly rapidly 
following a stimulus offset ( 18 ) such that its effects would be 
expected to wash out during an interruption to background noise. 
By contrast, an internal model of noise properties might be main-
tained over time, yielding more persistent effects. Thus, to distin-
guish these two hypotheses, we further investigated whether noise 
robustness would persist across interruptions in noise and whether 
it might improve following intermittent repeated exposure to par-
ticular background noises. Such improvement would be expected 
if listeners learn noise schemas akin to the schemas acquired for 
melodies ( 37 ), but not if they simply adapt to ongoing noise in 
the environment.

 We found that the ability to detect, recognize, and localize 
foreground sounds in noise improved over the initial second of 
exposure to the background, a timescale substantially longer than 
previously reported for synthetic noise and artificial tasks. We also 
found that foreground detection performance was robust to tem-
porary changes in the background, suggesting that listeners main-
tain a representation of noise properties across interruptions. 
Moreover, detection performance was enhanced for recurring 
background noises, suggesting that internal models of noise prop-
erties—noise schemas—are built up and maintained over time. 
Finally, we found that the pattern of human performance could 
be explained by an observer model that estimates the statistics of 
ongoing background noise and detects foreground sounds as out-
liers from this distribution. Taken together, the results suggest that 
the predictable statistical structure of real-world background noise 
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Fig. 1.   Potential explanations for noise- robust hearing and examples of experimental stimuli. (A) Fixed noise suppression hypothesis. A stimulus waveform 
(Left, background shown in gray, foreground shown in black) passes through a set of filters (Middle, transfer functions shown in shades of blue for an unspecified 
stimulus dimension), resulting in a set of filter responses over time (Right). Here and in (B and C), the filter tuning is unspecified and is not essential to the general 
predictions of the hypotheses. The filters could be nonlinear functions of the input and might measure higher- order properties of sound. In the fixed noise 
suppression hypothesis, the gain of a fixed set of filters is reduced to attenuate noise- like sounds (light gray responses show unattenuated filter response). 
(B) Adaptive noise suppression hypothesis. In the adaptive noise suppression hypothesis, responses to relatively constant features are suppressed over time 
via adaptation. (C) Noise modeling hypothesis. In the noise modeling hypothesis, estimation of background noise statistics allows foreground sounds to be 
detected as outliers from the associated distribution. (D) Example sounds used to generate experimental stimuli. Each panel shows the foreground (Left, black) 
and background (Right, gray) sound from an example trial, displayed as sound waveforms (Bottom), cochleagrams (Top), and mean excitation patterns (Right). 
Cochleagrams were generated from the envelopes of a set of bandpass filters with tuning modeled on the human ear. Darker gray denotes higher intensity. 
Mean excitation patterns were obtained by averaging the cochleagram over time. In our initial experiments, foreground–background pairs were selected to 
have similar long- term spectra to minimize differences in the spectrotemporal overlap that would otherwise cause large variation in detectability from across 
pairs. This design choice turned out not to be essential and was dropped in later experiments.
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is represented in an internal model that is used by the auditory 
system to aid hearing in noise. 

Results

 To characterize real-world hearing-in-noise abilities, we sourced 
a diverse set of 160 natural foreground sounds and background 
noises to create experimental stimuli. Each stimulus consisted of 
a brief foreground sound paired with an extended background 
noise. Foreground sounds were 0.5-s excerpts of recorded natural 
sounds ( 45 ,  46 ), and background noises were 3.25-s excerpts of 
sound textures synthesized ( 24 ) from the statistics of real-world 
textures drawn from a large set of YouTube soundtracks (AudioSet) 
( 47 ,  48 ). In our initial experiments, foreground–background pairs 
( Fig. 1D  ) were selected to have similar long-term spectra to avoid 
large differences in spectrotemporal overlap that would otherwise 
cause large variation in detectability across pairs. 

Experiment 1: Foreground Detection Improves with Exposure to 
Background Noise. We began by measuring the detection of natural 
sounds embedded in real- world background noises (Fig.  2A). 
On each trial, participants heard a continuous background noise 
presented either in isolation or with a brief “foreground” sound 
superimposed, then judged whether the stimulus contained one 
or two sound sources. Across trials, we manipulated both the 
temporal position and SNR of the foreground relative to the 
background. We chose the temporal positions so that there was 
always an onset asynchrony of at least 250 ms between foreground 
and background. Previously reported temporal dependencies of 
tone- in- noise detection (in which detection is better when tone and 
noise are asynchronous; "overshoot") are limited to asynchronies 
of less than a few hundred milliseconds (39, 40, 49). However, 
it seemed plausible that longer timescales might be evident with 
more naturalistic noise sources and foreground sounds.

 Because task performance might benefit from knowledge of 
the foreground sounds ( 35   – 37 ), it was important that listeners 
only heard each foreground sound once during the experiment. 
To achieve this goal, we used an experimental design in which 
each participant completed only one trial for each of the 160 
foreground–background pairings, with each pairing randomly 
assigned to one of the 20 experimental conditions (10 temporal 
positions crossed with 2 SNRs). Since this design necessitated a 
large sample size, we conducted this and other experiments 
online (with the exception of Experiment 3). Each of the 160 
background noises also occurred once without a foreground 
sound. We calculated a single false-alarm rate from these 
background-only trials along with a hit rate for each of the 20 
experimental conditions.

 We found that foreground detection performance (quantified 
as d′) improved with exposure to the background [ Fig. 2B  ; main 
effect of foreground onset time: F(9,828) = 22.85, P  < 0.001, 
 �2
partial

= 0.20    ]. As expected, we also saw better foreground detec-
tion performance at the higher SNR [main effect of SNR: F(1,92) 
= 769.15, P  < 0.001,  �2

partial
= 0.89    ], but the benefit of back-

ground exposure was evident at both SNRs [no significant inter-
action between foreground onset time and SNR: F(9,828) = 0.76, 
 P  = 0.65,  �2

partial
= 0.01    ]. In both cases, task performance 

increased as the foreground sound was positioned later in the 
noise, with performance rising over roughly the initial second of 
exposure to the background.

 This temporal dependence is consistent with the idea that lis-
teners use the background noise preceding the foreground in order 

to perform the task. The temporal dependence also rules out sev-
eral alternative possibilities. For example, if listeners performed 
the task entirely by detecting acoustic cues from the onset of the 
foreground sound, then task performance should be comparable 
at each temporal position of the foreground. Alternatively, if lis-
teners could also perform the task equally well by listening retro-
spectively (using the background noise following the foreground 
to make a decision about the foreground′s presence), then perfor-
mance should also be comparable across the different foreground 
positions since the total duration of background noise is the same 
for each condition.

 To better quantify the timescale of the effect, we fit an “elbow” 
function (a piecewise linear function consisting of two line seg-
ments; Materials and Methods ) to the results (averaged over SNRs). 
We bootstrapped over participants to obtain a CI around the 
location of the elbow point (i.e., the transition from rise to pla-
teau). This analysis indicated that foreground detection perfor-
mance improved with exposure to the background before reaching 
a plateau after 912 ms (95% CI: [812, 1,223] ms).  

Experiment 2: Exposure to Background Noise Benefits Sound 
Recognition. In Experiment 2, we asked whether the benefit of 
background exposure extends to a recognition task. On each 
trial, participants heard a foreground–background pairing from 
Experiment 1 and were asked to identify the foreground by 
selecting a text label from five options (Fig. 2C). One option was 
the correct label; the remaining options were chosen randomly 
from the labels of the other foreground sounds in the stimulus set.

 Recognition performance improved with exposure to the back-
ground in much the same way as did detection [ Fig. 2D  ; main 
effect of foreground onset time: F(9,2340) = 9.04, P  < 0.001, 
 �2
partial

= 0.03    ; no significant interaction between foreground 
onset time and SNR: F(9,2340) = 0.84, P  = 0.58,  �2

partial
= 0.00    ]. 

The elbow function fit to these results indicated a timescale of 
improvement similar to that in the detection task from Experiment 
1, with a plateau in performance after 905 ms (95% CI: [726, 
1,242] ms) of exposure to the background.  

Experiment 3: Exposure to Background Noise Benefits Sound 
Localization. We next asked whether the ability to localize sounds 
in noise similarly benefits from exposure to the background. We 
conducted this experiment in- lab using an array of speakers (Fig. 2E). 
On each trial, participants heard a scene composed of a foreground 
sound superimposed on spatially diffuse background noise, with the 
foreground occurring at one of five temporal positions within the 
background. Participants sat facing the array, holding their head 
still, and localized the foreground sound, entering the label of the 
corresponding speaker as their response. Because this experiment 
had to be run in person (rather than online), we chose to use only 
five temporal positions at a single SNR in order to reduce the total 
number of conditions, thereby increasing power and allowing us 
to collect data from a modest number of participants. Additionally, 
we lowered the SNR to account for the likelihood that spatial cues 
would reduce detection thresholds (50). It turned out that at the 
tested SNR, localization in elevation was close to chance. Thus, 
we quantified sound localization performance using the absolute 
localization error in azimuth only.

 Sound localization improved with exposure to the background 
in a manner similar to that observed for detection and recognition 
tasks [ Fig. 2F  ; main effect of foreground onset time: F(4,84) = 
6.09, P  < 0.001,  �2

partial
= 0.22    ], with performance plateauing 

after 962 ms (95% CI: [750, 1,954] ms) of exposure to the back-
ground. Overall, the results point to a consistent benefit from 
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noise exposure, spanning detection, recognition, and localization 
of natural sounds in noise.  

Experiment 4: Benefit of Background Exposure Persists Despite 
Knowing What to Listen for. In real- world conditions, we often 
listen for particular sounds in an auditory scene. For example, 
when crossing the street, one might listen out for crosswalk 
signals, bike bells, or accelerating engines. Because expectations 
about a source can aid its segregation from a scene (35–37), and 
might also benefit hearing in noise, it was unclear whether the 
benefit of background exposure would persist if participants 
knew what to listen for. To address this issue, we conducted a 
variant of Experiment 1 in which participants were cued to listen 
for a particular foreground sound on each trial (SI  Appendix, 
Fig.  S1A). On each trial, participants first heard a foreground 
sound in isolation (the “cue”), followed by continuous background 
noise. Half of the trials contained the cued foreground sound 
superimposed somewhere on the background, and participants 
judged whether the cued sound was present. We again found that 
foreground detection performance improved with exposure to the 

background [SI Appendix, Fig. S1B; main effect of foreground 
onset time: F(9,1215) = 19.91, P < 0.001, �2

partial
= 0.13 ]. The 

timescale of improvement was similar to that in the detection 
task from Experiment 1, with a plateau in performance after 885 
ms (95% CI: [582, 1,766] ms) of exposure to the background 
(not significantly different from the elbow point in Experiment 
1; P = 0.52 via permutation test, elbow point difference: 68 
ms). These results demonstrate that the benefit of background 
exposure persists even when participants know what to listen for, 
highlighting the relevance of this phenomenon for a range of 
real- world contexts.

An Observer Model Based on Background Noise Estimation 
Replicates Human Results. The results from Experiments 1 to 4 
demonstrate a benefit of background noise exposure that provides 
evidence against the fixed noise suppression hypothesis, but that 
is conceptually consistent with both the adaptive suppression 
and internal noise modeling hypotheses. To first establish the 
plausibility of background noise estimation as an account of 
human hearing in noise, we built a signal- computable observer 

A

B

C

D

E

F

Fig. 2.   Experiments 1 to 3: Foreground detection, recognition, and localization improve with exposure to background noise. (A) Experiment 1 task. On each 
trial, participants heard a continuous background noise (gray) presented either in isolation (e.g., trial 1) or with a brief additional foreground sound (black) 
superimposed (e.g., trial 2). We manipulated the onset time and SNR of the foreground relative to the background. Participants judged whether the stimulus 
contained one or two sound sources. (B) Experiment 1 results. Average foreground detection performance (quantified as d′; blue circles) is plotted as a function 
of SNR and foreground onset time. Shaded regions plot SE. Dashed lines plot elbow function fit. The solid line below the main axis plots one SD above and below 
the median elbow point, obtained by fitting elbow functions to the results averaged over SNR and bootstrapping over participants; the dot on this line plots the 
fitted elbow point from the complete participant sample. (C) Experiment 2 task. On each trial, participants heard background noise (gray) containing a foreground 
sound (black) and were asked to identify the foreground by selecting a text label from five options. (D) Experiment 2 results. Foreground recognition performance 
(quantified as percent correct; blue circles) is plotted as a function of SNR and foreground onset time. Chance performance was 20%. Data are plotted using 
the same conventions as (B). (E) Experiment 3 task. Stimuli were presented via an array of 133 speakers spanning −90° to +90° in azimuth and −20° to +40° in 
elevation. On each trial, participants heard a scene composed of diffuse background noise (different samples of a texture played from 10 randomly selected 
speakers, shown in gray in the diagram) and a foreground sound (played from a randomly selected speaker, show in black in the diagram) occurring at one of 
five temporal positions within the noise. Participants judged the location of the foreground sound. (F) Experiment 3 results. Average foreground localization 
performance (quantified as absolute localization error in azimuth, in degrees; green circles) is plotted as a function of foreground onset time. The y axis is oriented 
to match conventions in other panels where higher positions along the ordinate indicate better performance. Data are plotted using the same conventions as (B).

http://www.pnas.org/lookup/doi/10.1073/pnas.2408995121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2408995121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2408995121#supplementary-materials


PNAS  2024  Vol. 121  No. 47 e2408995121 https://doi.org/10.1073/pnas.2408995121 5 of 12

model to perform the foreground detection task from Experiment 
1. The model evaluates the likelihood of incoming samples under 
a distribution whose parameters are estimated from past samples. 
The key idea is that samples not belonging to the background 
distribution (i.e., samples from the foreground sound) will tend to 
have low likelihood under a model of the background. Thus, the 
model can detect a foreground sound via samples that it assigns 
low likelihood. Intuitively, the fitted noise distribution should 
become more accurate with more samples, making it easier to 
detect outliers. However, it was not obvious that this type of model 
would achieve variation in performance with onset time that was 
on par with that observed in humans. We asked whether such a 
model could replicate the temporal dependence of foreground 
detection in noise observed in our human participants.

 A schematic of the model is shown in  Fig. 3A  . First, an input 
sound waveform is passed through a standard model of auditory 
processing consisting of two stages: a peripheral stage modeled 
after the cochlea (yielding a “cochleagram”), followed by a set of 
spectrotemporal filters inspired by the auditory cortex that operate 
on the cochleagram, yielding time-varying activations of different 
spectrotemporal features. Next, a probability distribution is esti-
mated from these activations over a past time window and used to 
evaluate the negative log-likelihood of samples in a “present” time 
window. This quantity (“surprisal”) measures how unexpected the 
present samples are given the learned background distribution. The 
process is then stepped forward in time and repeated, resulting in 
a set of surprisal values for each spectrotemporal filter at each time 
point within the stimulus. The surprisal is then averaged across 
filter channels and compared to a decision threshold to decide 
whether a foreground sound is present. The decision threshold was 
determined empirically as a value of surprisal substantially greater 
than would be expected by chance (Materials and Methods ).        

 For simplicity, we implemented the model with univariate nor-
mal distributions fit to each filter output as these were sufficient 
to account for the qualitative effects seen in human judgments. 
We note that this choice results in an impoverished model of 
sound texture. In particular, the distribution only models the mean 
and variance of filter activations while ignoring other higher-order 
statistics (e.g., correlations across filters) known to be important 
for sound texture perception ( 24 ). It also ignores temporal struc-
ture in the signal that exceeds the width of the filter kernels, treat-
ing all filter activations as independent. Although natural textures 
sometimes contain such high-order structure, it is at present 
unclear how this structure should be captured in a probabilistic 
model [existing models of texture ( 24 ) are based on a set of sta-
tistics rather than explicit probability distributions as are needed 
to evaluate outliers], and so we chose to sidestep this question to 
obtain a proof of concept for the general approach. The resulting 
simplifications would be expected to lower performance relative 
to what would be obtained with a distribution that more com-
pletely accounts for the statistical structure of natural textures. 
That said, the model captured some of the spectrotemporal struc-
ture of natural textures that differentiates them from traditional 
synthetic noise, and so seemed a reasonable choice with which to 
explore the general hypothesis of noise modeling.

 The model was additionally defined by two hyperparameters: 
the width of the past window over which noise distribution param-
eters were estimated and the width of the present window over 
which surprisal was averaged. We tested a range of past and present 
window sizes and found that the best match to human data 
occurred with a past window size of 1,000 ms and a present win-
dow size of 500 ms. These results are presented here (see 
 SI Appendix, Fig. S2  for the human-model correlation for different 
window sizes).

A

B C

Fig. 3.   An observer model based on background noise estimation replicates human results. (A) Model schematic. First, an input sound waveform is passed 
through a standard model of auditory processing. This model consists of two stages: a peripheral stage modeled after the cochlea (yielding a cochleagram, 
first panel), followed by a set of spectrotemporal filters inspired by the auditory cortex that operate on the cochleagram, yielding time- varying activations of 
different spectrotemporal features (second panel). A sliding window is used to evaluate the negative log- likelihood (surprisal) within each filter channel over time 
(third panel). Finally, the resulting filter surprisal curves are averaged across channels and compared to a time- varying decision threshold to decide whether a 
foreground sound is present (fourth panel; yaxis is scaled differently in third and fourth panels to accommodate the surprisal plots for multiple individual filters). 
(B) Model results. Model foreground detection performance (quantified as d′) is plotted as a function of SNR and foreground onset time. Shaded regions plot 
SD of performance obtained by bootstrapping over stimuli. (C) Human- model comparison. Model performance is highly correlated with human performance 
on the foreground detection task (Experiment 1) for both the −2 dB (black circles) and −6 dB (gray circles) SNR conditions.

http://www.pnas.org/lookup/doi/10.1073/pnas.2408995121#supplementary-materials
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 Despite its simplicity, the model qualitatively replicated the 
results from Experiment 1, showing a similar pattern of improve-
ment with exposure to the background ( Fig. 3B  ; see SI Appendix, 
Fig. S2  for model results with alternative window sizes, which 
remained qualitatively consistent with human results). Although 
model performance was below that of humans, the overall pattern 
of model performance across conditions was highly correlated 
with human performance (−2 dB SNR:  � = 0.95    , P  < 0.001; −6 
dB SNR:  � = 0.88    , P  = 0.002). Overall, these results support 
background noise estimation as a plausible account of human 
hearing in noise by demonstrating that the qualitative trends evi-
dent in human behavioral performance can be explained by a 
model that estimates the statistics of ongoing background noise.  

Experiments 5a and 5b: Foreground Detection Is Robust to 
Background Interruptions. Experiments 5a and 5b aimed 
to distinguish the adaptive suppression and noise modeling 
hypotheses by testing the effect of interruptions to the background. 
We modified the stimuli from Experiment 1, temporarily 
interrupting the background noise with either silence or white 
noise, initially using a 500 ms interruption (Experiment 5a; 
Fig. 4A). The rationale was that this change to the background 
might cause adaptation to “reset,” leading to a decrement in 
foreground detection performance following the interruption. By 
contrast, the noise modeling hypothesis could allow for a benefit 
from background exposure despite the interruption, because the 
estimated noise parameters could be stored across the interruption.

 Consistent with this latter possibility, foreground detection 
performance was greater for foregrounds following the interrup-
tion compared to those preceding the interruption [ Fig. 4B  ; main 
effect of foreground position relative to interrupter: F(1,77) = 
172.86, P  < 0.001,  �2

partial
= 0.69    ]. The pattern of results was 

similar for silent and noise interruptions [no significant interaction 
between interrupter type and foreground position relative to inter-
rupter: F(1,77) = 0.12, P  = 0.73,  �2

partial
= 0.00   ].

 To address the possibility that a 500 ms interruption was insuf-
ficient to trigger a complete release of adaptation ( 51 ), we ran an 

additional experiment (Experiment 5b) in which we increased the 
duration of the interrupter to 1,500 ms and asked whether the 
benefit of background exposure persisted. Despite the longer inter-
ruption, we again found that detection performance was greater for 
foregrounds following the interruption compared to those preceding 
the interruption [ Fig. 4C  ; main effect of foreground position relative 
to interrupter: F(1,70) = 134.48, P  < 0.001,  �2

partial
= 0.66    ]. The 

pattern of results was again comparable for noise and silent inter-
ruptions [no significant interaction between interrupter type and 
foreground position: F(1,70) = 0.01, P  = 0.92,  �2

partial
= 0.00   ].

 Perhaps the clearest evidence against an adaptation explanation 
is the fact that the results appear to not be affected by the duration 
of the interruption [500 versus 1,500 ms; no significant effect of 
interrupter duration when comparing performance for onset times 
after the interruption: F(1,147) = 0.08, P  = 0.77,  �2

partial
= 0.00    ]. 

Although the parameters of any adaptive processes that might be 
at play are not definitively established, one would almost surely 
expect a difference in release from adaptation for differences in 
interruption durations of this magnitude. Taken together, the 
results of Experiments 5a and 5b indicate that the benefit of back-
ground exposure is unlikely to reflect adaptation alone. Instead, 
listeners appear to maintain an internal representation of noise 
properties across temporary interruptions.  

Experiments 6 and 7: Repetition of Background Noise Enhances 
Foreground Detection. We next investigated whether internal models 
of noise are built up over time, akin to the schemas that can be 
learned for recurring patterns in speech and music (36, 37). If listeners 
learn noise schemas and use them to aid hearing in noise, foreground 
detection should be enhanced for frequently recurring background 
noises. It also seemed plausible that the learning of a schema might 
reduce the “delay benefit”—the improvement in performance as the 
foreground onset is delayed relative to the noise onset—since listeners 
could use a stored representation of the noise properties, rather than 
having to estimate them online. We thus also tested whether the delay 
benefit would be altered if the noise repeated across trials.

A

B C

Fig. 4.   Experiments 5a and 5b: Foreground detection is robust to background interruptions. (A) Experimental task. Stimuli were like those from Experiment 1 
but were modified by replacing the Middle 500 ms (Experiment 5a) or 1,500 ms (Experiment 5b) of background noise with either silence (orange) or white noise 
(yellow). Participants were asked to ignore this interruption and judge whether the stimulus contained one or two sound sources. (B) Experiment 5a results. 
Average foreground detection performance (quantified as d′) is plotted as a function of interrupter type and foreground onset time. Shaded regions plot SE. 
The gray region denotes the temporal position of interruption in background noise. * indicates statistical significance, P < 0.001. (C) Experiment 5b results. 
Same conventions as (B).

http://www.pnas.org/lookup/doi/10.1073/pnas.2408995121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2408995121#supplementary-materials
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 We first ran a variant of Experiment 1 in which a subset of the 
background noises (selected randomly for each participant) 
occurred repeatedly over the course of the experiment ( Fig. 5A  ). 
A background noise was repeated on every trial in blocks of 40 
trials, with each block containing a different repeating noise. We 
used unique noise exemplars for each repetition so that listeners 
would have to learn the statistical properties of the noise ( 28 ) 
rather than the specific exemplar ( 52 ,  53 ). We note that adaptation 
could, in principle, be expected to build up over the course of the 
block of repeated noise, potentially also accounting for altered 
performance. This experiment was thus not intended to distin-
guish noise schemas from adaptation, but rather to test a predic-
tion of noise schemas in a simple setting before probing for 
benefits of repeated noises that might be less likely to be produced 
by adaptation (Experiment 8).        

 Each foreground sound occurred only once throughout the 
experiment to avoid the possibility that listeners might instead 
benefit from learning the structure of the foreground. As a result, 
we had to forego the controlled foreground–background pairings 
used in Experiments 1 to 5 and instead allowed foregrounds and 
backgrounds to be paired randomly across participants, while 
lowering the SNR to partially compensate for the decreased aver-
age spectral overlap between foreground and background. This 
design constraint necessitated a companion experiment 
(Experiment 7) with similarly uncontrolled foreground–back-
ground pairings in which the backgrounds varied across trials, 
with each of the 160 background noises occurring once with a 
foreground and once without a foreground, as in Experiment 1.

 In the main analysis of interest, we found that performance was 
enhanced for repeating compared to nonrepeating background 
noises [ Fig. 5B  ; main effect of background type: F(1,395) = 90.82, 
 P  < 0.001,  �2

partial
= 0.19     ]. This enhancement developed over the 

course of a block in which the noises were repeated [SI Appendix, 
Fig. S3 , main effect of first versus second half of trials within a 
block: F(1,195) = 17.44, P  < 0.001,  �2

partial
= 0.08     ]. Although 

an effect of foreground onset time remained evident when the 
noise was repeated [main effect of foreground onset time for 
Experiment 6: F(9,1755) = 10.75, P  < 0.001,  �2

partial
= 0.05     ], 

there was a significant interaction between foreground onset time 
and background repetition [F(9,3555) = 2.52, P  = 0.01, 
 �2
partial

= 0.01     ]. Specifically, the delay benefit was smaller for 
repeated backgrounds compared to nonrepeated backgrounds 
(significant difference in the delay benefit; P  < 0.001 via permu-
tation test, delay benefit difference: 0.15 in units of d′). To ensure 
the reduced delay benefit for repeating backgrounds was not 
driven by participants with near-ceiling performance, we ran a 
control analysis in which we selected groups of participants to 
have similar asymptotic performance using data from foreground 
onset times of 1,500, 2,000, and 2,500 ms (Materials and 
Methods ), then measured the delay benefit using the data from the 
remaining foreground onset times for these participants. After 
matching asymptotic performance across groups of participants, 
the reduction in delay benefit persisted for repeated compared to 
nonrepeated backgrounds ( Fig. 5 B  , Inset , significant difference 
in delay benefit; P  = 0.01 via permutation test, delay benefit dif-
ference: 0.17 in units of d′).

 Overall, these results confirm one prediction of the schema-based 
account of noise robustness: Detection performance is improved 
for recurring backgrounds and less dependent on online noise 
estimation. We also note that these findings help reconcile the 
results in this paper with those of more traditional experimental 
paradigms, which repeat the same type of background noise 

throughout an experiment and find less pronounced temporal 
effects than those shown here.

 We additionally note that the results seem to be qualitatively 
unaffected by whether the foreground–background pairings were 
controlled. The effect of foreground onset time was similar in 
Experiment 7 (uncontrolled pairings) compared to Experiment 1 
(controlled pairings), with no significant interaction between the 
experiment and the effect of foreground onset time [SI Appendix, 
Fig. S4 ; F(9,2628) = 0.65, P  = 0.75,  �2

partial
= 0.00    ]. Both the 

timescale of improvement and the delay benefit were similar 
between the two experiments (no significant difference in elbow 
point: P  = 0.72 via permutation test, elbow point difference: 41 
ms; no significant difference in delay benefit: P  = 0.50 via permu-
tation test, delay benefit difference: 0.03 in units of d′).  

Experiment 8: Foreground Detection Is Enhanced for 
Intermittently Repeated Background Noises. We next asked 
whether the benefit from recurring noises would be preserved 
across intervening stimuli, as might be expected if noise schemas 
are retained in memory, but not if the benefit reflects standard 
adaptation. In Experiment 8, the same type of background noise 
occurred on every other trial within a block (Experiment 8; 
Fig. 5C). As in Experiment 6, each block contained a different 
repeating background noise with unique noise exemplars for each 
repetition and each foreground sound was presented once with 
foregrounds and backgrounds paired randomly across participants.

 We again found that performance was enhanced for repeating 
compared to nonrepeating background noises [ Fig. 5D  ; main 
effect of background type: F(1,367) = 63.03, P  < 0.001, 
 �2
partial

= 0.15     ]. Additionally, there was again a significant inter-
action between the effect of foreground onset time and whether 
the background was repeated or not [F(9,3303) = 4.38, P  < 0.001, 
 �2
partial

= 0.01     ], such that the delay benefit was smaller for repeat-
ing compared to nonrepeating backgrounds (significant difference 
in delay benefit: P  = 0.002 via permutation test, delay benefit 
difference: 0.17 in units of d′). This difference persisted after 
matching asymptotic performance across subsets of participants 
( Fig. 5 D  , Inset , significant difference in delay benefit; P  = 0.03 
via permutation test, delay benefit difference: 0.13 in units of d′). 
These results suggest that noise schemas—representations of noise 
statistics that aid foreground detection—are built up over time, 
maintained across intervening stimuli, and lessen the dependence 
on online noise estimation.  

Experiment 9: Benefit of Background Exposure Is Reduced for 
Stationary Noise. Across multiple tasks, we consistently found an 
improvement in performance over the initial second of exposure 
to the background. What factors might govern the timescale of 
this effect? A model that estimates statistics within an integration 
window (as in the model of Fig.  3) should exhibit improved 
performance up to the window width. One intuitive possibility 
is that the window width reflects a tradeoff between obtaining a 
good estimate of the background noise statistics (better for longer 
windows) and being able to resolve changes in these statistics 
(better for shorter windows). However, the accuracy with which 
statistics can be estimated for a given window size depends on the 
stability of the noise statistics over time (i.e., the stationarity of 
the noise). This observation raises the possibility that the optimal 
estimation window could be shorter for more stationary noise. 
To test whether these considerations might influence hearing in 
noise, we modified the stimuli from Experiment 1, replacing the 
real- world texture backgrounds with spectrally matched noises 
(Fig. 6A) to create noise backgrounds with increased stationarity. 

http://www.pnas.org/lookup/doi/10.1073/pnas.2408995121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2408995121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2408995121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2408995121#supplementary-materials
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We quantified stationarity with a measure of the SD of texture 
statistics across time windows (17, 33, 34, 48) (Materials and 
Methods) and confirmed the increase in stationarity for spectrally 
matched noise backgrounds (Fig.  6B). Because the detection 
task is easier with more stationary noise, we reduced the SNRs 
of the foreground relative to the background to avoid ceiling 
performance.

 As in our previous experiments, foreground detection perfor-
mance improved with exposure to the background [ Fig. 6C  ; main 
effect of foreground onset time: F(9,1836) = 25.99, P  < 0.001, 
 �2
partial

= 0.11     ]. However, the effect was more modest than that 
observed with more naturalistic noise [significant interaction 
between foreground onset time and stationarity: F(9,3636) = 2.69, 
 P  = 0.004,  �2

partial
= 0.01     ]. In particular, the timescale of improve-

ment was shorter for stationary noise backgrounds compared to 
texture backgrounds (significant difference in elbow point for 
Experiment 9 compared to pooled results from Experiments 1 
and 7: P  = 0.01 via permutation test, elbow point difference: 319 
ms), and the delay benefit was reduced (significant difference in 

delay benefit: P  = 0.01 via permutation test, delay benefit differ-
ence: 0.10 in units of d′). This reduction in delay benefit remained 
after matching asymptotic performance across groups of partici-
pants ( Fig. 6 C  , Inset , significant difference in delay benefit; P  = 
0.03 via permutation test, delay benefit difference: 0.11 in units 
of d′). These findings help to further reconcile the results of this 
paper with prior work that has predominantly used highly sta-
tionary synthetic noise and has found weaker effects of onset time. 
The temporal effects we nonetheless observed could reflect the fact 
that the background noise spectrum varied from trial to trial in 
our experiments (unlike most experiments in prior work).

 As with other effects of stationarity on integration timescales 
( 33 ), there are at least two computational accounts of these results. 
One is that there is a single statistical estimation window that 
changes in temporal extent depending on the input stationarity. 
Another is that there are multiple estimation windows operating 
concurrently (potentially estimating different statistical proper-
ties), with a decision stage that selects a window (or combination 
of windows) on which to base responses. For instance, by selecting 
the shortest window that enables a confident decision, a decision 

A

C
D

B

Fig. 5.   Experiments 6 to 8: Repetition of background noise enhances foreground detection. (A) Experiment 6 design. A background noise was repeated (red 
waveforms) on every trial in blocks of 40 trials, with each block containing a different repeating background noise (denoted by different shades of red). Participants 
judged whether the stimulus contained one or two sound sources. To ensure listeners would not benefit from learning the structure of the foregrounds, each 
foreground occurred only once with foregrounds and backgrounds paired randomly across participants. This design necessitated a companion experiment with 
similarly uncontrolled foreground–background pairings in which the backgrounds were not repeated across trials (Experiment 7; not shown). (B) Experiment 6 
and 7 results. Average foreground detection performance (quantified as d′) is plotted as a function of foreground onset time for repeated (red circles) versus 
nonrepeated (gray circles) backgrounds. Shaded regions plot SE. Dashed lines plot elbow function fit. Vertical brackets denote the delay benefit. The Inset shows 
results after matching asymptotic performance across groups of participants. (C) Experiment 8 design. The experiment was identical to Experiment 6 except 
that background noises were repeated (red waveforms) on every other trial within a block with intervening trials containing nonrepeating backgrounds (gray 
waveforms). (D) Experiment 8 results. Same conventions as (B).
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stage might determine that a shorter estimation window is most 
appropriate for stationary noise.  

Effect of Background Exposure Depends on Foreground–
Background Similarity. The possibility of concurrent estimation 
windows of different extents raised the question of whether the 
similarity of the foreground to the background could also influence 
the timescale of the effect of background exposure. Specifically, 
foregrounds that differ more noticeably from a background might 
be detectable with a less accurate model of the background that 

could be estimated with fewer samples (via a shorter estimation 
window). As one test of this possibility, we reanalyzed the results of 
Experiment 7, dividing trials into two groups whose foreground–
background pairings differed in spectrotemporal similarity. We 
found a significant interaction between foreground onset time 
and spectrotemporal similarity [SI Appendix, Fig. S5; F(9,1791) 
= 3.90, P < 0.001, �2

partial
= 0.02 ], whereby the timescale of the 

noise exposure benefit was shorter for foreground–background 
pairs with lower spectrotemporal similarity (significant difference 

A

B

D

F

E

C

Fig. 6.   Experiments 9 and 10: Benefit of background exposure is reduced for stationary noise and harmonic foregrounds. (A) Example background noises 
from Experiment 9. The real- world texture backgrounds (Left, blue) used in Experiments 1 to 8 were replaced with spectrally matched noise (Middle, pink) to 
increase the noise stationarity. Backgrounds are displayed as cochleagrams (with darker gray indicating higher intensity) and mean excitation patterns (Right). 
(B) Stationarity of background noises. Shaded circles indicate a measure of stationarity (SD of texture statistics over time, normalized to account for increased 
variability of some statistics relative to others; Materials and Methods) for the texture backgrounds used in Experiments 1 to 8 (shown in blue) and the spectrally 
matched noise backgrounds used in Experiment 9 (shown in pink). Gray lines connect textures to their spectrally matched counterparts, illustrating that the 
spectrally matched noise is generally more stationary than its texture counterpart. Vertical lines indicate mean stationarity of background noises in each stimulus 
set. For comparison, a histogram of stationarity scores calculated from a large set of YouTube soundtracks (AudioSet; Materials and Methods) is shown in dark 
gray. Both sets of background noises are more stationary than the average soundtrack. (C) Experiment 9 results. Average foreground detection performance 
(quantified as d′) is plotted as a function of foreground onset time for more stationary (pink circles) versus less stationary (blue circles; obtained from pooled 
results of Experiments 1 and 7) backgrounds. Shaded regions plot SE. Dashed lines plot elbow function fit. Vertical brackets denote the delay benefit. Solid lines 
below the main axis plot one SD above and below the median elbow points, obtained by bootstrapping over participants; dots on these lines plot the fitted 
elbow points from the complete participant samples. The Inset shows results after matching asymptotic performance across groups of participants. (D) Example 
foreground sounds from Experiment 10. The foreground sounds used in Experiments 1 to 9 (Bottom, blue) were replaced with human vocalizations and musical 
instrument sounds (Top, purple). Foregrounds are displayed as cochleagrams. (E) Harmonicity of foregrounds. Harmonicity was quantified with a measure of 
waveform periodicity (Materials and Methods). Histograms of periodicity are shown for the set of human vocalizations and instrument sounds used in Experiment 
10 (purple) and for the set of foregrounds used in Experiments 1 to 9 (blue). (F) Experiment 10 results. Average foreground detection performance (quantified 
as d′) is plotted as a function of foreground onset time for more harmonic (purple circles) versus less harmonic (blue circles; obtained from pooled results of 
Experiments 1 and 7) foregrounds. Conventions same as (C).

http://www.pnas.org/lookup/doi/10.1073/pnas.2408995121#supplementary-materials
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in elbow point: P = 0.003 via permutation test, elbow point 
difference: 526 ms). This result is consistent with the idea that 
there are multiple concurrent windows for estimating noise 
statistics, with shorter windows being used when they are sufficient 
for a decision. The result also provides further evidence that the 
estimation of noise properties aids the detection of the foreground. 
In particular, the result helps rule out the possibility that the effect 
of onset time reflects interference between the processing of the 
background and the detection of the foreground (as could in 
principle happen if the noise onset initiated some involuntary 
process that was not used to detect the foreground and that instead 
initially impaired processing of concurrent sounds).

Experiment 10: Benefit of Background Exposure Is Reduced for 
Harmonic Foregrounds. Motivated by the effect of foreground–
background similarity shown in the preceding section, in the final 
experiment, we tested the effect of background exposure on the 
detection of approximately harmonic foregrounds. We avoided 
human vocalizations and music instrument sounds in our initial 
experiments on the grounds that they are more detectable in noise 
(5) compared to other sounds and so could have introduced another 
source of variation in detection performance. However, the analysis 
of foreground–background similarity suggested that harmonic 
sounds might produce weaker effects of background exposure; 
given their prevalence in both everyday life and prior auditory 
experiments, this seemed important to test. The experiment was 
identical to Experiment 7 except that the foreground sounds 
used in previous experiments were replaced with excerpts from 
human vocalizations and musical instrument sounds (Fig. 6D). 
We confirmed that these sounds were more harmonic than those 
used in the previous experiments, using a measure of waveform 
periodicity (54) (Fig. 6E; Materials and Methods).

 A benefit of background exposure was evident for these (approx-
imately) harmonic sounds [ Fig. 6F  ; main effect of foreground 
onset time: F(9,2574) = 13.66, P  < 0.001,  �2

partial
= 0.05     ], but it 

was weaker than that observed for less harmonic sounds [signifi-
cant interaction between foreground onset time and harmonicity: 
F(9,4374) = 4.25, P  < 0.001,  �2

partial
= 0.01     ]. Compared to the 

pooled results from Experiments 1 and 7, the elbow point was 
earlier (significant difference in elbow point: P  = 0.03 via permu-
tation test, elbow point difference: 317 ms) and the delay benefit 
was smaller (significant difference in delay benefit: P  < 0.001 via 
permutation test, delay benefit difference: 0.19 in units of d′). 
This difference persisted after matching performance across exper-
iments ( Fig. 6 F  , Inset ; significant difference in delay benefit: P  < 
0.001 via permutation test, delay benefit difference: 0.20 in units 
of d′). The results again help to reconcile our findings with pre-
vious work using speech or tones that have found smaller effects, 
while also showing that the qualitative effects of background expo-
sure remain evident with harmonic foregrounds.   

Discussion

 We investigated whether internal models of environmental noise 
are used by the auditory system to aid the perception of natural 
foreground sounds in background noise. We found that the ability 
to detect, recognize, and localize foreground sounds in noise 
improved over the initial second of exposure to the background. 
This benefit of background exposure persisted even when partic-
ipants knew the foreground sound they had to listen for. The 
benefit of prior noise exposure was robust to temporary changes 
in the background and was enhanced for recurring backgrounds, 
suggesting that noise schemas are built up and maintained over 

time. We found that an observer model designed to capture the 
statistics of ongoing background noise could account for the pat-
tern of human behavioral performance observed in the foreground 
detection task. Finally, we found evidence for a window of noise 
estimation that varies depending on the stimulus characteristics, 
appearing shorter both for more stationary noise and when fore-
ground sounds are sufficiently distinct (e.g., by virtue of being 
harmonic) from the background so as to not require a detailed 
model of the background properties. Overall, the results suggest 
that the auditory system leverages internal models of noise prop-
erties—noise schemas—to facilitate the estimation of other con-
current sounds and support noise-robust hearing. 

Relation to Prior Work. We sought to distinguish between three 
candidate explanations for noise- robust hearing: fixed noise 
suppression, adaptive noise suppression, and internal modeling 
of noise schemas. Two lines of evidence have previously been 
presented in support of adaptive suppression (and contra fixed 
suppression). The first involves behavioral improvements in 
hearing abilities following exposure to a noise source (see ref. 38 
for a review), with improvements occurring over approximately 
500 ms. A second body of research involves evidence of neural 
adaptation to noise (13, 14, 16, 18, 23), with related modeling 
work suggesting that these adaptive responses could be explained 
by a mechanism that dynamically suppresses noise (23).

 We built on this prior work in three respects. First, we found that 
foreground detection performance was robust to interruptions in 
the background and was enhanced for frequently recurring back-
grounds. These findings are inconsistent with conventional adap-
tation to ongoing noise and instead suggest that noise properties 
are estimated and maintained over time. Second, we demonstrated 
that the benefits of noise exposure on behavior generalize to natural 
stimuli and everyday listening contexts. In these conditions, behav-
ioral performance improved over a period roughly twice as long as 
previously reported, with performance plateauing around 1 s. These 
large effects appear to partly reflect the use of stimuli that vary across 
trials, realistic sources of noise, and diverse foreground sounds. We 
found smaller effects when noises repeated within an experiment 
(Experiments 6 and 8), when noise was more stationary (Experiment 
9), and when foregrounds were harmonic (Experiment 10). These 
results reconcile our findings with previous work, which has tended 
to use a single type of highly stationary synthetic noise and har-
monic foreground sounds, and which has seen smaller effects of 
time. Our results highlight the utility of assessing perception using 
natural stimuli, as it can reveal effects not fully evident with simpler 
traditional stimuli ( 55   – 57 ). Third, our experiments show that the 
temporal effects of exposure to background noise occur across mul-
tiple auditory tasks: detection, recognition, and localization.

 The temporal dynamics of human task performance in noise 
could be explained by an observer model that estimates the statistics 
of ongoing background noise and detects foreground sounds as 
outliers from this distribution. This finding demonstrates that the 
observed improvement in task performance following noise expo-
sure can result directly from a model of noise properties, and raises 
the question of how to reconcile our results with neurophysiological 
findings of noise suppression in the auditory system. We suggest 
that noise modeling and noise suppression are not mutually exclu-
sive. One possibility is that the auditory system maintains parallel 
representations of sound: one in which noise properties are esti-
mated and maintained and another in which noise is suppressed 
to yield a relatively invariant representation of the foreground. The 
first representation could be used to derive the second, such that 
as noise becomes more accurately estimated (e.g., with more expo-
sure to the background), the foreground representation becomes 
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enhanced, as we found here. The existence of such parallel rep-
resentations is consistent with neurophysiological findings that 
noise stimuli are represented subcortically ( 58 ,  59 ) and preferen-
tially drive neurons in the primary auditory cortex ( 60   – 62 ) but 
appear to be suppressed in the nonprimary auditory cortex ( 17 ,  63 ).  

Limitations. The model presented here provides evidence that 
estimation of noise statistics could underlie aspects of hearing in 
noise, but in its present form is not a complete account of human 
perception in this setting. As noted earlier, we modeled noise with 
relatively simple distributions that do not completely capture 
the structure known to be present in real- world noise. Although 
the approach was sufficient for our purposes, more sophisticated 
models will be required to fully account for human performance. A 
complete model would also estimate the properties of any foreground 
sounds in addition to detecting their presence. Intuitively, one 
might adopt an “old plus new” (64) approach in which samples 
that deviate from the distribution of ongoing background noise 
are interpreted as a (“new”) foreground sound whose features can 
be estimated as the “residual” after accounting for the background 
noise properties. The model as implemented here also does not 
account for the enhanced foreground detection observed for 
interrupted or frequently recurring backgrounds (Experiments 5 
to 8). However, some of these effects could potentially be modeled 
by incorporating a prior over noise properties that is continually 
updated over the course of the experiment.

The Role of Texture in Auditory Scene Analysis. Using real- world 
noise signals, we found that the ability to hear in noise improves 
over the initial second of exposure to the background noise—
substantially longer than the timescale previously reported for 
analogous tasks with simpler experimental stimuli. This relatively 
long timescale is broadly consistent with the growing literature 
on sound texture perception. Sound textures are thought to be 
perceptually represented in the form of time- averaged summary 
statistics (28) computed using averaging mechanisms with a 
temporal extent that depends on the texture stationarity (33) 
but is generally on the order of seconds. Moreover, the detection 
of changes in texture statistics documented in previous studies 
improves across a temporal scale similar to that observed in our 
work (29, 30). Other experiments have indicated that texture 
properties are estimated separately from other sound sources (33) 
and are filled in when masked by other sounds (34). Our results 
provide further evidence that sound texture plays a critical role 
in auditory scene analysis, as its estimation benefits the detection, 
recognition, and localization of other concurrent sounds. This 
growing literature supports the idea that background noise 
properties are actively estimated by the auditory system even in 
the presence of other sound sources.

Reconsidering the Role of Noise. Sound textures are ubiquitous 
in everyday listening, constituting the background noise of many 
real- world auditory scenes. Yet research on hearing in noise has 
devoted relatively little attention to the role of noise itself. We 
consider hearing in noise as a form of auditory scene analysis 
in which listeners must segregate concurrent foreground and 

background sources from one another. From this perspective, 
noise is another source to be estimated rather than suppressed 
(65). However, the segregation of multiple sound sources is only 
possible because of the statistical regularities of natural sounds. 
Previous work has shown that human listeners can quickly detect 
repeating patterns in the acoustic input and use this structure to 
facilitate source segregation in artificial auditory scenes (66–68). 
The present results complement these findings by showing that 
the predictable statistical structure of noise is used to aid source 
segregation in natural auditory scenes.

Future Directions. Reverberation is another element of sound 
often thought of as a distortion that the auditory system 
must suppress to improve hearing in acoustic environments 
characteristically encountered in daily life (15, 69–71). It is 
analogously possible that the estimation, rather than suppression, 
of reverberation might help to recover the underlying sound 
source (72, 73). Thus, robustness to reverberation may be 
aided by an internal model of the statistical regularities that 
characterize real- world reverberation (72). Schemas of room 
reverberation may also be built up through short- term exposure 
to room- specific reverberation (74–77).

 The computational principles described here are equally relevant 
to other sensory modalities. For instance, the detection or recog-
nition of an object amid a cluttered visual scene can be viewed as 
a visual analogue of our hearing-in-noise experiments. As in hear-
ing, the ability to visually recognize objects is impaired by clut-
ter—a widely studied phenomenon known as visual crowding 
( 78 ). Given that visual textures are thought to be represented by 
summary statistics averaged over space ( 79 ,  80 ), visual object rec-
ognition might be expected to improve with the size of a back-
ground texture region as background properties should be better 
estimated across larger spatial extents. Some preliminary evidence 
supports this hypothesis. Several studies from the visual crowding 
literature demonstrate a release from crowding when additional 
distractors or flankers are added to a display ( 81 ,  82 ). However, 
these studies are limited to relatively simple displays, and it 
remains to be seen whether such effects may be observed in more 
naturalistic settings.   

Materials and Methods

Methods are described in full detail in SI Appendix, SI Materials and Methods. The 
full methods section includes descriptions of experimental participants and pro-
cedures, stimulus generation, data analysis, statistical tests, and power analyses. 
All participants provided informed consent, and the Massachusetts Institute of 
Technology Committee on the Use of Humans as Experimental Subjects approved 
all experiments.

Data, Materials, and Software Availability. All code and data are available 
at https://github.com/mcdermottLab/NoiseSchemas (83).
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SI Materials & Methods 
 
Stimulus selection 
Foreground sounds: To select foreground sounds for our experimental stimuli, we began with a 
set of 447 2-second-long recordings of natural sounds used in previous experiments from our 
laboratory (1, 2). Because harmonicity can aid hearing in noise (3), we manually screened these 
recordings to remove any sounds containing music, speech, or human vocalizations (e.g., 
screams or grunts). Some approximately harmonic sounds nonetheless remained in the stimulus 
set (e.g., alarms, various beeping electronics, animal vocalizations, etc.); see Fig. 6E. 
Additionally, we removed texture-like sounds (e.g., hairdryer or crumpling paper) to help ensure 
that selected foregrounds would be distinct from the sound texture backgrounds they were 
superimposed on. This left us with a set of 167 foreground sounds. These foreground sounds 
were used for Experiments 1-9. Experiment 10 used a different set of foreground sounds chosen 
to be approximately harmonic (see “Experiment 10” below).   
 
Background sounds: To select background sounds for our experimental stimuli, we screened a 
large set of audio examples (AudioSet (4)) for sound textures. Specifically, we first screened the 
“unbalanced train set” within AudioSet by excluding 1) any sound whose label indicated the 
presence of speech or music (e.g., “whispering”, “song”, etc.; see Table S1 for list of excluded 
labels), 2) any sound from the “sourceless” branch of the ontology, 3) any sound less than 10 s 
in length, and 4) any sound with greater than 1% of values equal to zero. This resulted in a set of 
222,560 sounds (which were used for computing the normalization values used in the stationarity 
measure described below). We then computed a measure of stationarity developed in previous 
work from our lab (5–7) for each sound within this set and excluded any sound with a stationarity 
score above 0, leaving us with a large set of 142,922 AudioSet “textures.” From these AudioSet 
“textures”, we selected relatively stationary sounds by keeping sounds with stationarity scores 
between -0.75 and -0.67 (approximately the 87th and 94th percentiles of the sounds with scores 
below 0). Additionally, we sought to avoid periodic textures (e.g., rhythmic clapping or waves 
crashing) because foreground detectability within such textures greatly depends on the timing of 
the foreground relative to the period of the background texture. We measured the periodicity of 
each AudioSet texture as in previous work (7) by measuring the normalized auto-correlation of 
the envelope of the stimulus waveform and selecting the maximum peak between 125 ms and 
500 ms (2–8 Hz). We kept only those sounds whose periodicity fell within 0.05 and 0.075 
(approximately the 1st and 7th percentiles across all AudioSet textures). The intersection of the 
stationary and non-periodic textures yielded 1511 textures. We note that the stationarity analyses 
that were subsequently performed in this paper used a slightly different stationarity measure than 
the one used for the initial screening described above (the new measure was similar in spirit to 
the old one, but used a different form of normalization). As a result, the stationarity scores 
referenced above differ slightly from those reported in Fig. 6B.  
 
The background noises used in our experiments were textures synthesized from statistics 
measured from the (recorded) AudioSet sound textures. There were two reasons for this choice. 
First, textures recorded in natural environments often contain distinctive acoustic events arising 
from other sources. For example, a recording of a stream might contain faintly audible bird calls. 
Such additional sources would create confusion in the experiments involving detection or 
recognition. Second, in several experiments (Experiments 3, 6 and 8) we needed to present 
multiple exemplars of the same texture, and for this purpose required more than 10 s of audio. 
For each of the 1511 textures, we created 9-second-long synthetic exemplars using a standard 
texture synthesis method (8). We found that the synthesis procedure converged (average SNR 
of all statistic classes was 20 dB or higher) for 1285 textures and selected the background noises 
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from this set. We drew 3.25 s excerpts from these 9-second-long synthesized textures (see 
Foreground-background pairings below) to use in Experiments 1, 2, 4, 5, 7 and 10.  
 
Stationarity measure:  To quantify the stationarity of a sound for the analysis of Experiment 9, we 
computed a measure based on the standard deviation of texture statistics (8) across successive 
time windows (5–7, 9), based on the idea that stationary sounds have temporally stable statistical 
properties. Specifically, we first computed a set of texture statistics (subband mean, envelope 
mean, envelope standard deviation, envelope skew, envelope correlations, modulation band 
power, C1 modulation correlations, and C2 modulation correlations) for successive segments of 
a signal (using excerpt lengths of 0.125, 0.25, 0.5, 1, and 2 s). To put each of the statistics on the 
same scale, we then z-scored each statistic using the mean and standard deviation of each 
statistic calculated across the set of screened full-length AudioSet sounds (see “Background 
sounds” section above). To quantify how much each statistic changed across excerpts, we 
computed the standard deviation of each z-scored statistic across all excerpts of the same length. 
Because some statistics are intrinsically more variable than others, we computed a normalized 
measure of the variability of each statistic by dividing the computed standard deviations 
(separately for each statistic and excerpt length) by the average (i.e., expected) standard 
deviation across all the screened AudioSet sounds. To obtain a single measure of stationarity, we 
then averaged these normalized standard deviations across statistics and excerpt lengths. 
However, because some statistics classes contain more statistics than others, we first averaged 
the normalized standard deviations across all statistics within each class before averaging across 
the statistics classes (effectively weighting each statistics class equally) and excerpt lengths. The 
result is a normalized measure of statistic variability where smaller (i.e., more negative) values 
indicate greater stationarity.  
 
Foreground-background pairings: In our initial experiments, experimental stimuli were generated 
from pairs of foregrounds and backgrounds selected to have similar long-term spectra to avoid 
large differences in foreground detectability across different foreground-background pairings. To 
select these pairs, we first created cochleagrams for each possible foreground and background 
sound. Cochleagrams were generated from the envelopes of a set of 38 bandpass filters (plus 
one low-pass and one high-pass channel) at a sampling rate of 500 Hz with tuning modeled on 
the human ear (8). Next, for each 2-second-long foreground sound, we randomly selected 100 
0.5s cochleagram segments (from the entire 2s sound) and computed the Mahalanobis distance 
(𝐷) between each foreground cochleagram segment and every background cochleagram. 
Specifically, we calculated the Mahalanobis distance for each point in time of the foreground 
cochleagram using the background cochleagram as the reference distribution, then averaged 
these distances over time: 𝐷 =	 !

"
∑ %(𝐹# −𝑚)"𝑆$!(𝐹# −𝑚)"
#%! , where 𝐹# is one column of the 

foreground cochleagram at time 𝑡, 𝑚 is the excitation pattern (time-averaged cochleagram) of the 
background, and 𝑆 is the covariance of the background cochleagram. The Mahalanobis distance 
quantifies the difference between the foreground and background excitation patterns while 
accounting for the covariance structure among cochlear channels measured from the 
background. For every possible foreground-background pair, we stored the foreground segment 
with minimum Mahalanobis distance then used the Hungarian algorithm (10)) to pair each of the 
167 foregrounds with a background sound such that the Mahalanobis distance across the pairings 
was minimized. Finally, we manually listened to each of the selected background textures and 
selected 3.25 s excerpts that subjectively sounded fairly uniform. We then selected 7 of these 
pairings to use as practice trials, leaving the remaining 160 foreground-background pairings to be 
used as experimental stimuli. Table S2 lists each of the foreground-background pairings; the 
sound waveforms for each foreground and background are provided in the data and code 
repository for this paper. 
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Experimental procedure for online participants 
The condition-rich design of our experiments (e.g., 20 experimental conditions in Experiment 1), 
resulted in obtaining relatively few trials per condition per subject. To obtain the large sample 
sizes necessary to attain reliable results, we conducted our experiments (with the exception of 
Experiment 3) online using the Amazon Mechanical Turk and Prolific crowdsourcing platforms. 
Experiments 1 and 4 were conducted in 2021-2022 on Amazon Mechanical Turk. Experiments 2 
and 5-10 were conducted in 2023-2024 on Prolific. Across multiple studies from our laboratory, 
we have found that online data can be of comparable quality to data collected in the lab provided 
a few modest steps are taken to standardize sound presentation, encourage compliance and 
promote task engagement (7, 11–15).  
 
All participants provided informed consent and the Massachusetts Institute of Technology 
Committee on the Use of Humans as Experimental Subjects (COUHES) approved all 
experiments. Amazon Mechanical Turk participants were required to be in the United States, to 
have a HIT approval rate of greater than 95%, and to have had more than 100 HITs approved. 
Prolific participants were required to be in Canada, the United Kingdom, or the United States, to 
have an approval rate of greater than 95%, and to be fluent in English.  
 
Participants were asked to perform the experiment in a quiet location and minimize external 
sounds as much as possible. Next, participants were instructed to set the computer volume to a 
comfortable level while listening to a calibration noise signal set to the maximum sound level 
presented during the main experimental task. Each experiment then began with a “headphone 
check” task to ensure participants were wearing headphones (16). Ensuring headphone use 
provides more standardized sound presentation across participants and helps to improve overall 
listening conditions by reducing external background noise. Following the headphone check task, 
each participant performed a set of practice trials for which feedback was provided after each 
response. The practice trials helped to ensure participants understood the task instructions and 
could perform the task correctly. In the main experiment, we incentivized good performance and 
task engagement by providing feedback after each trial and rewarding participants with a small 
bonus payment for each correct trial (17).  
 
Exclusion criteria 
During analysis, we screened out participants who were not able to perform the task by excluding 
those whose performance, averaged across conditions, was below a level that we expected every 
attentive and normal-hearing participant to achieve, provided they understood the instructions. 
Because the purpose of the experiments was to assess differences between conditions, rather 
than absolute performance, this exclusion procedure is neutral with respect to the hypotheses. 
For Experiments 1 and 4, participants were excluded if average detection performance (d’) was 
below 0.6. For Experiment 2, participants were excluded if average recognition performance was 
below 40% correct. For Experiment 3, we planned to exclude participants whose average 
localization error was above 30° (as it turned out, all had error levels below this criterion). For 
Experiments 5-10, participants were excluded if average detection performance (d’) was below 
0.8. This exclusion criterion excluded between 0% and 17% of participants, depending on the 
experiment. 
 
Experiment 1 (Detection) 
Stimuli: For each of the 160 foreground-background pairs, we constructed stimuli in which the 
foreground appeared at each of 10 possible temporal positions (foreground onset times of 250, 
500, 750, 1000, 1250, 1500, 1750, 2000, 2250, and 2500 ms) and each of 2 possible SNRs (-2 
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and -6 dB). This yielded a total of 3200 stimuli containing a foreground sound. We also created 
an additional 160 stimuli that consisted of the background noise only.  
 
Procedure: The experiment consisted of 320 trials. Half of these trials included the 160 
background noises without a foreground sound. The other half of these trials included each of the 
160 foreground-background pairings randomly assigned to one of the 20 experimental conditions 
(10 foreground positions crossed with 2 SNRs). On each trial, participants judged whether the 
stimulus contained one or two sound sources.  
 
Participants: A total of 200 participants were recruited through Amazon Mechanical Turk. Of 
these, 88 participants were excluded either because they failed the headphone check task, had 
self-reported hearing loss, withdrew from the experiment, or completed less than 90% of 
experimental trials. Finally, 19 participants were excluded due to low task performance (average 
d’ < 0.6). This resulted in a total of 93 participants included in data analyses. Of these participants, 
41 identified as female, 45 as male, and 1 as nonbinary (6 participants did not provide a 
response). The average age of participants was 37.3 (s.d. = 11.0). All participants were unique to 
this experiment. 
 
Sample size: To determine the sample size necessary to yield stable results, we ran a pilot version 
of the experiment with 92 participants and calculated the split-half reliability of the average 
foreground detection performance as we varied the number of participants included in the 
analysis. The pilot experiment was identical to the actual experiment apart from having 3s 
background noises (rather than 3.25s as in the actual experiment). Split-half reliability was 
computed by randomly splitting the sample in half, measuring the Pearson correlation between 
average performance results in each half, and then applying the Spearman-Brown correction. 
Because we were primarily interested in the effect of foreground onset time, we measured the 
split-half reliability separately for each SNR condition then averaged the split-half reliabilities 
across SNR conditions. Additionally, since the estimated reliability depends on the random split 
of participants, we repeated this procedure for 10,000 random splits. Because the resulting 
distribution of reliabilities was skewed, we applied the Fisher z-transform to make the distribution 
approximately normal. We then took the mean of the Fisher z-transformed distribution (i.e., mean 
across all random splits) and applied the inverse Fisher z-transformation to obtain our final 
measure of split-half reliability. We performed this procedure as we varied the number of included 
participants and found that split-half reliability increased from 0.40 with 10 participants to 0.89 
with 92 participants. We fit a curve to these reliabilities and extrapolated that a sample size of 94 
participants would be needed to achieve a split-half reliability of at least 0.9. We targeted this 
sample size, but due to the nature of the screening procedure and the need to collect online data 
in batches of participants, the actual sample was slightly below this target.  
 
Statistics and data analysis: We calculated a hit rate for each of the 20 experimental conditions 
(10 foreground onset times crossed with 2 SNRs) and a single false alarm rate using the 
background-only trials. Detection performance was quantified as d’: 𝑑& = Φ$!(Hit	Rate) −
Φ$!(False	Alarm	Rate) where Φ$! is the inverse CDF of the standard normal distribution. We 
performed a repeated measures analysis of variance (ANOVA) to analyze the effect of foreground 
onset time and SNR on foreground detection performance. We assumed data was normally 
distributed and evaluated this by eye. Mauchly’s test indicated that the assumption of sphericity 
had not been violated. For each main effect and interaction of interest, we reported F-statistics, 
p-values and 𝜂'()#*(+, . To quantitatively estimate the timescale of improvement with exposure to 
the background, we fit an elbow function to the results averaged over SNRs. The elbow function 
was a piecewise linear function consisting of a rise and plateau:  𝑓(𝑡) = =𝑎𝑡 + 𝑏, 𝑡 < 𝑐

𝑎𝑐 + 𝑏, 𝑡 ≥ 𝑐, where 𝑎 
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is the slope of the rise, 𝑏 is the intercept of the rise, 𝑐 is the transition from rise to plateau (i.e., the 
“elbow point”) and 𝑡 is time. We fit the elbow function by minimizing the absolute error between 
the estimated elbow function and the data. To obtain a confidence interval around the location of 
the elbow point, we bootstrapped over participants 10,000 times. 
 
Experiment 2 (Recognition) 
Stimuli: We used the same stimuli as in Experiment 1, including only those that contained a 
foreground sound. 
 
Procedure: Each participant heard one trial for each of the 160 foreground-background pairings 
randomly assigned to one of the 20 experimental conditions (10 foreground positions crossed 
with 2 SNRs). Thus, the experiment consisted of 160 trials. On each trial, participants were asked 
to identify the foreground by selecting a text label from five options. One option was the correct 
label of the foreground, and the remaining options were chosen randomly from the labels of the 
other foreground sounds in the stimulus set. 
 
Participants: A total of 409 participants were recruited through Prolific. Of these, 133 participants 
were excluded either because they failed the headphone check task, had self-reported hearing 
loss, withdrew from the experiment, or completed less than 90% of experimental trials. Finally, 15 
participants were excluded due to low task performance (average recognition performance < 40% 
correct). This resulted in a total of 261 participants included in data analyses. Of these 
participants, 123 identified as female, 134 as male, and 2 as nonbinary (2 participants did not 
provide a response). The average age of participants was 38.8 (s.d. = 12.1). All participants were 
unique to this experiment. 
 
Sample size: To determine the sample size necessary to yield stable results, we ran a pilot version 
of the experiment with 103 participants and calculated the split-half reliability of the average 
foreground recognition performance as we varied the number of participants included in the 
analysis. The pilot experiment was identical to the actual experiment apart from having 3s 
background noises (rather than 3.25s as in the actual experiment). The procedure for determining 
sample size was identical to that of Experiment 1. We found that split-half reliability increased 
from 0.07 with 10 participants to 0.53 with 102 participants. We fit a curve to these reliabilities and 
extrapolated that a sample size of 252 participants would be needed to achieve a split-half 
reliability of at least 0.9. We targeted this sample size, but due to the nature of the screening 
procedure, the actual sample was slightly above the target sample size. 
 
Statistics and data analysis: We performed a repeated measures ANOVA to analyze the effect of 
foreground onset time and SNR on foreground recognition performance (quantified as precent 
correct). We assumed data was normally distributed and evaluated this by eye. Mauchly’s test 
indicated that the assumption of sphericity had not been violated. For each main effect and 
interaction of interest, we reported F-statistics, p-values and 𝜂'()#*(+, . The procedure for fitting the 
elbow function was identical to that of Experiment 1. 
 
Experiment 3 (Localization) 
Stimuli: For each of the 160 background noises, we synthesized five unique 7-second-long 
exemplars and cut each exemplar into two 3.25-second-long sounds to yield a total of 10 unique 
waveforms for each background noise. We chose to synthesize 7-s exemplars rather than the 9-
s exemplars used to generate stimuli in Experiments 1 and 2 because it reduced the time for 
synthesis while still enabling two excerpts to be cut from each exemplar. On a given trial, these 
10 noise exemplars were played from 10 randomly chosen speakers to create diffuse background 
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noise. Each background noise was played at a level 52 dBA such that the total level of background 
noise was 62 dBA. The foreground sounds were identical to the 0.5s clips used in previous 
experiments and were played at a random speaker location (distinct from the 10 locations of the 
background noise) at a level of 50 dBA (i.e., at an SNR of -12 dB).  
 
Procedure: Each participant heard one trial for each of the 160 foreground-background pairings, 
randomly assigned to one of the five experimental conditions (foreground onset times of 250, 750, 
1250, 1750, and 2250 ms). Participants were instructed to fixate on the speaker directly in front 
of them, with their head still, for the duration of sound presentation. At the end of the sound 
presentation, participants could move their head to note the label of the speaker from which they 
judged the foreground sound to have played from. This label was entered using a keyboard. 
Participants were then instructed to reorient to the speaker directly in front of them before 
beginning the next trial. Trials were presented in two blocks of 80 trials with a short break between 
the blocks.  
 
Participants: A total of 22 participants were recruited from the area around Cambridge, MA. Of 
these participants, 7 identified as female and 15 as male. The average age of participants was 
26.4 (s.d. = 3.6). All participants were unique to this experiment. All participants provided informed 
consent and the Massachusetts Institute of Technology Committee on the Use of Humans as 
Experimental Subjects (COUHES) approved this experiment. No participants were excluded due 
to low task performance (average localization error > 30°). 
 
Sample size: To determine an appropriate sample size, we performed a power analysis using 
G*Power (18). We sought to be 90% likely to detect an effect as big as that observed in 
Experiment 1, at a p<0.01 significance level using a repeated measures ANOVA with 5 repeated 
measurements (foreground onset times), assuming sphericity and a correlation among repeated 
measures of 0.2 (estimated from Experiment 1). This yielded a target sample size of 17 
participants. We ran somewhat more than this to be conservative. 
 
Statistics and data analysis: We performed a repeated measures ANOVA to analyze the effect of 
foreground onset time on foreground localization performance. Localization performance was 
quantified as the absolute localization error in azimuth. We assumed data was normally 
distributed and evaluated this by eye. Mauchly’s test indicated that the assumption of sphericity 
had not been violated. For the main effect of interest, we reported F-statistics, p-values and 
𝜂'()#*(+, . The procedure for fitting the elbow function was identical to that of Experiment 1. 
 
Experiment 4 (Cued Detection) 
Stimuli: The stimuli were identical to those of Experiment 1 but with lower SNRs (-5 and -8 dB). 
The cue sound was always the same waveform as the foreground sound that could appear within 
the background, the only difference being that the foreground amplitude was scaled to achieve 
the desired SNR for that trial. The cue was presented at the same level as the background, and 
thus differed in level from the foreground. 
 
Procedure: The experiment consisted of 320 trials. On each trial, participants first heard a 
foreground sound in isolation (the “cued sound”), followed by continuous background noise. Half 
of the trials contained the cued foreground sound superimposed somewhere on the background 
noise, randomly assigned to one of the 20 experimental conditions (10 foreground positions 
crossed with 2 SNRs). Participants judged whether the stimulus contained the cued sound. 
 
Participants: A total of 240 participants were recruited through Amazon Mechanical Turk. Of 
these, 81 participants were excluded either because they failed the headphone check task, had 
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self-reported hearing loss, withdrew from the experiment, or completed less than 90% of 
experimental trials. Finally, 23 participants were excluded due to low task performance (average 
d’ < 0.6). This resulted in a total of 136 participants included in data analyses. Of these 
participants, 61 identified as female, 68 as male, and 1 as nonbinary (6 participants did not provide 
a response). The average age of participants was 38.5 (s.d. = 11.3). All participants were unique 
to this experiment.  
 
Sample size: To determine the sample size necessary to yield stable results, we ran a pilot version 
of the experiment with 95 participants and calculated the split-half reliability of the average 
foreground detection performance as we varied the number of participants included in the 
analysis. The pilot experiment was identical to the actual experiment apart from having 3s 
background noises (rather than 3.25s as in the actual experiment) and SNRs of -2 and -6 dB 
(rather than -5 and -8 dB in the actual experiment). The procedure for determining sample size 
was identical to that of Experiment 1. We found that split-half reliability increased from 0.37 with 
10 participants to 0.88 with 94 participants. We fit a curve to these reliabilities and extrapolated 
that a sample size of 105 participants would be needed to achieve a split-half reliability of at least 
0.9. We targeted this sample size, but due to the nature of the screening procedure and the need 
to collect online data in batches of participants, the actual sample was slightly above the target 
sample size. 
 
Statistics and data analysis: We calculated a hit rate for each of the 20 experimental conditions 
(10 foreground onset times crossed with 2 SNRs) and a single false alarm rate using the 
background-only trials, then quantified detection performance as d’. We performed a repeated 
measures ANOVA to analyze the effect of foreground onset time and SNR on foreground 
detection performance. We assumed data was normally distributed and evaluated this by eye. 
Mauchly’s test indicated that the assumption of sphericity had not been violated. For each main 
effect and interaction of interest, we reported F-statistics, p-values and 𝜂'()#*(+, . The procedure 
for fitting the elbow function was identical to that of Experiment 1. 
 
Observer model 
Overview: First, an input sound waveform is passed through a standard model of auditory 
processing consisting of two stages: a peripheral stage modeled after the cochlea, yielding a 
“cochleagram”, followed by a set of spectrotemporal filters (inspired by the auditory cortex) that 
operate on the cochleagram, yielding time-varying activations of different spectrotemporal 
features. Next, a probability distribution is estimated from the filter activations over a past time 
window. This distribution is then used to evaluate the surprisal of samples in a present time 
window. The process is then stepped forward in time and repeated, resulting in a set of surprisal 
values for each time point of the stimulus. Finally, this surprisal curve is compared to a time-
varying decision threshold to decide whether a foreground sound is present. 
 
Cochleagram: Cochleagrams were computed with a set of 40 filters (38 bandpass filters plus one 
low-pass and one high-pass filter). Filter cutoffs were evenly spaced on an ERB-scale (19) and 
thus mirrored the frequency resolution believed to characterize the human cochlea. Filters had 
transfer functions that were a half-cycle of a cosine function. The cochleagram resulted from the 
following sequence of steps (8). First, the filters were applied to the audio signal (at an audio 
sampling rate of 20000 Hz), yielding subbands. Second, subband envelopes were computed 
using the Hilbert transform. Third, the subband envelopes were passed through a compressive 
nonlinearity (by raising them to a power of 0.3). Fourth, the compressed envelopes were 
downsampled to a sampling rate of 2000 Hz.  
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Spectrotemporal filters: We selected spectrotemporal filters that were principal components of a 
large set of natural textures, as these captured the variance within natural background sounds. 
We first extracted 100 random 50-ms-long segments from the cochleagram representation of 
1000 sound textures not used in our experiments, and then ran principal component analysis on 
these cochleagram segments. We found that 541 principal components were sufficient to explain 
95% of the variance in the random segments and subsequently used these components as the 
spectrotemporal filters for our model. The filter activations were the dot product of the filter with 
the stimulus cochleagram.  
 
Surprisal: Surprisal is defined as the negative log-probability of an event. Because we model filter 
activations using a continuous, normal distribution, we calculate surprisal using the negative log-
density. For a univariate normal random variable 𝑋	~	𝒩(𝜇, 𝜎,), surprisal can be written as:  
𝑆(𝑥) = − lnL𝑝(𝑥)N = !

,
O-$.

/
P
,
+ ln(𝜎) + lnL√2𝜋N	 = !

,
(𝐷), + ln(𝜎) + lnL√2𝜋N,  

where 𝐷 is the Mahalanobis distance. Thus, any event that occurs with low likelihood will have 
high surprisal. On the grounds that foreground sounds should be unlikely under a distribution of 
the background, our model detects the presence of a foreground sound by tracking when the 
surprisal exceeds some criterion threshold. However, because the surprisal scales with the 
natural logarithm of the standard deviation, any threshold used for this purpose must similarly 
scale with the standard deviation of the background. In practice, rather than scale the decision 
threshold for each stimulus, we instead scale the surprisal by subtracting off the standard 
deviation term then use a fixed decision threshold across all stimuli.  
 
Distribution fitting procedure: Due to the large number of spectrotemporal filters used, fitting a 
single high-dimensional joint distribution to the activations of all filters was intractable. Thus, we 
assumed activations across filters to be independent and fit separate univariate distributions to 
each filter’s activations. In particular, we assumed filter activations were univariate Gaussians. 
We estimated the mean and variance of the activations within a past window and used these 
values to calculate the surprisal in a present window (averaging the surprisal over each time point 
within the window). We repeated this procedure at a sequence of time points, stepping forward in 
increments of 10 ms. This yielded a surprisal curve (surprisal over time) for each spectrotemporal 
filter. We then averaged across filters to yield the final surprisal curve. The size of the past window 
over which distributional parameters are estimated is a model hyperparameter. We tested past 
window sizes of 500, 750, 1000, 1250, 1500, 1750, 2000, 2250 and 2500 ms and present window 
sizes of 100, 250 and 500 ms. We found the 1000 ms past window and 500 ms present window 
to give the best fit with human results, as measured by the correlation with human results. The 
latter value is intuitively sensible given the 500 ms foreground duration. Figure 3 shows results 
for these window lengths. 
 
Boundary handling: Boundaries pose a challenge for the estimation process in our model (and for 
the human perceptual system), for two reasons. First, at the onset of a stimulus, there is not yet 
enough stimulus history with which to estimate distribution parameters for the computation of 
surprisal (because there are not enough data points to reliably estimate parameters). Second, the 
filter activations contain boundary artifacts caused by the stages of filtering applied to the stimulus 
onset. We mitigated these issues by taking a weighted average of the estimated distributional 
parameters (𝜃U# at time 𝑡) and a prior (𝜋# at time 𝑡) whenever the available stimulus history is less 
than the past window size (𝑙 in samples) over which parameters are estimated. Because the 
model was fit to the activations of spectrotemporal filters derived from PCA, the prior on the mean 
was 0 and the prior on the variance was given by the variance of each principal component across 
the set of random texture segments from which the principal components were computed (see 
“Spectrotemporal filters” section above). The weight (𝑤# at time 𝑡) was linearly relaxed from full 
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weight on the prior at stimulus onset to full weight on the estimated parameters once the available 
stimulus history was equal to the size of the past window. Thus, the model parameters (𝜃# at time 
𝑡) were given by:  

𝜃# = 𝜃U#(1 − 𝑤#) + 𝜋#𝑤# 

where 𝑤# = Y1 −
0!
+
			if	𝑛# < 𝑙

0									otherwise
 and 𝑛# is the number of samples available at time 𝑡.  

 
Time-varying decision threshold: To determine a decision threshold, we ran the model on 100 
random 3.25s excerpts of the 160 textures used in our experiments (see “Simulation of 
Experiment 1” below). This yielded a total of 16,000 surprisal curves. Then, for each point in time, 
we took the mean and standard deviation across all surprisal curves to quantify the distribution of 
surprisal in the absence of a foreground sound. The main idea is that surprisal values greater 
than that expected by chance (i.e., falling in the tail of this distribution) should indicate the 
presence of a foreground sound. We thus took the mean plus some number of standard deviations 
as the decision threshold. The number of standard deviations was chosen via grid search (1000 
samples linearly spaced between 0.5 and 5) to best match the model’s false alarm rate to that of 
human participants in Experiment 1. This was done separately for each set of model 
hyperparameters (i.e., past and present window sizes).  
 
Decision rule: For each point in time, we evaluated whether the measured surprisal exceeded the 
decision threshold. The model decided a foreground sound was present if the surprisal exceeded 
the decision threshold for at least 50% of the time in any 500ms window.   
 
Simulation of Experiment 1 (Fig. 3B): 
Because the model could be run on arbitrarily many stimuli, we opted to show the model results 
in the limit of a very large amount of data. We simulated the experiment on a larger set of stimuli 
obtained by generating multiple texture exemplars for each of the background textures used in 
the human experiments. The stimuli were otherwise identical to those used in Experiment 1. To 
generate these stimuli, we synthesized 10 unique exemplars of each background noise texture 
then randomly took 10 different excerpts from each to yield a total of 100 unique excerpts of each 
background noise. We then ran the model on each of the 3,360 possible stimulus configurations 
(see “Stimuli” section in Experiment 1 above) for all 100 excerpts of a given background to yield 
model responses to a total of 336,000 stimuli. To provide a sense of the variability in model results 
for different subsets of stimuli, we computed model performance (quantified as d’) over 10,000 
subsets of the total 336,000 stimuli. Specifically, for each of the 20 experimental conditions, one 
stimulus was chosen randomly for each of the 160 foreground-background pairings and a model 
hit rate was computed from these 160 trials. Thus, a total of 3,200 (20 conditions x 160 pairings) 
trials were used to calculate the model hit rates for each experimental condition. To compute a 
model false-alarm rate, we randomly selected 20 background-only stimuli for each of the 160 
backgrounds, giving another 3,200 trials. Together, this yielded a total of 6,400 stimuli (with half 
containing a foreground) for which performance was evaluated at each bootstrapped sample. 
Final model performance was taken as the mean performance across the 10,000 bootstrapped 
samples. 
 
Experiment 5a (Short Interruptions in Background Noise) 
Stimuli: For each of the 160 foreground-background pairs, we constructed 4-second-long stimuli 
in which the middle 500 ms of background noise was replaced with either silence or white noise 
(12 dB higher in level relative to the background). The foreground sound appeared at each of 8 
possible temporal positions (foreground onset times of 250, 500, 750, 1000, 2500, 2750, 3000, 
and 3250 ms), at an SNR of -2 dB. This yielded a total of 2560 stimuli containing a foreground 
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sound. We also created an additional 320 stimuli that consisted of the background noise only with 
each of the two possible “interrupters” (silence or white noise).  
 
Procedure: The experiment consisted of 320 trials. Half of these trials presented the 160 
background noises without a foreground sound, randomly assigned to one of the two interrupter 
conditions. The other half of these trials included each of the 160 foreground-background pairings 
randomly assigned to one of the 16 experimental conditions (8 foreground positions crossed with 
2 interrupter types). Participants were instructed to ignore the interrupter and judge whether the 
stimulus contained one or two sound sources. 
 
Participants: A total of 105 participants were recruited through Prolific. Of these, 27 participants 
were excluded either because they failed the headphone check task, had self-reported hearing 
loss, withdrew from the experiment, or completed less than 90% of experimental trials. No 
participants were excluded due to low task performance (average d’ < 0.8). This resulted in a total 
of 78 participants included in data analyses. Of these participants, 45 identified as female, 32 as 
male, and 1 as nonbinary. The average age of participants was 38.3 (s.d. = 12.2). All participants 
were unique to this experiment. 
 
Sample size: To determine the sample size necessary to yield stable results, we ran a pilot version 
of the experiment with 57 participants and calculated the split-half reliability of the average 
foreground detection performance for foreground onset times prior to the interrupter as we varied 
the number of participants included in the analysis. The pilot experiment was identical to the actual 
experiment apart from being run on Mechanical Turk rather than Prolific. At the time the pilot 
experiment was run, data quality on Mechanical Turk had declined due to an uptick in fraudulent 
workers, and so we opted to run the actual experiment on Prolific but still considered the 
Mechanical Turk data to be reasonable as a pilot. The procedure for determining sample size was 
identical to that of Experiment 1. We found that split-half reliability increased from 0.40 with 10 
participants to 0.84 with 56 participants. We fit a curve to these reliabilities and extrapolated that 
a sample size of 78 participants would be needed to achieve a split-half reliability of at least 0.9. 
 
Statistics and data analysis: We calculated a hit rate for each of the 16 experimental conditions 
(8 foreground onset times crossed with 2 interrupter types) and false alarm rates using the 
background-only trials for each interrupter type, then quantified detection performance as d’. We 
performed a repeated measures ANOVA to analyze the effect of interrupter type and foreground 
position (relative to the interrupter) on foreground detection performance. We assumed data was 
normally distributed and evaluated this by eye. Mauchly’s test indicated that the assumption of 
sphericity had not been violated. For each main effect and interaction of interest, we reported F-
statistics, p-values and 𝜂'()#*(+, .  
 
Experiment 5b (Longer Interruptions in Background Noise) 
Stimuli: The stimuli were created in a manner similar to that of Experiment 5a. Previous work 
using EEG to measure adaptation in auditory-evoked cortical potentials in humans found that the 
recovery from adaptation (in silence) followed an exponential function with a time-constant of 
around 1300 ms (20). Thus, it seemed possible that the timescale of recovery from adaption 
exceeded the duration of the 500 ms interrupter used in Experiment 5a, causing the benefit of 
background exposure to persist across the interruption. Thus, in Experiment 5b, we increased the 
duration of the interrupter to 1500 ms. For each of the 160 foreground-background pairs, we 
constructed 5-second-long stimuli in which the middle 1500 ms of background noise was replaced 
with either silence or white noise (12 dB higher in level relative to the background). Because it 
seemed plausible that gaps between the noise and the background texture might make the noise 
more salient, making for a stronger test, the first and last 125 ms of the white noise interrupter 



 
 

12 
 

was replaced with silence. The foreground sound appeared at each of 8 possible temporal 
positions (foreground onset times of 250, 500, 750, 1000, 3500, 3750, 4000, and 4250 ms), at an 
SNR of -2 dB. This yielded a total of 2560 stimuli containing a foreground sound. We also created 
an additional 320 stimuli that consisted of the background noise only with each of the two possible 
“interrupters” (silence or white noise).  
 
Procedure: The procedure was identical to that of Experiment 5a. 
 
Participants: A total of 121 participants were recruited through Prolific. Of these, 49 participants 
were excluded either because they failed the headphone check task, had self-reported hearing 
loss, withdrew from the experiment, or completed less than 90% of experimental trials. Finally, 1 
participant was excluded due to low task performance (average d’ < 0.8). This resulted in a total 
of 71 participants included in data analyses. Of these participants, 31 identified as female, 39 as 
male, and 1 as nonbinary. The average age of participants was 34.3 (s.d. = 10.2). All participants 
were unique to this experiment. 
 
Sample size: Because we planned to compare the results of Experiment 5b to that of Experiment 
5a, we targeted the size of the sample collected in Experiment 5a (n=78), but due to the nature 
of the screening procedure, the actual sample was slightly below the target sample size. 
 
Statistics and data analysis: Like Experiment 5a, we calculated a hit rate for each of the 16 
experimental conditions (8 foreground onset times crossed with 2 interrupter types) and false 
alarm rates using the background-only trials for each interrupter type, then quantified detection 
performance as d’. We performed a repeated measures ANOVA to analyze the effect of 
interrupter type and foreground position (relative to the interrupter) on foreground detection 
performance. We assumed data was normally distributed and evaluated this by eye. Mauchly's 
test indicated that the assumption of sphericity had not been violated. To compare foreground 
detection performance following different interrupter durations (between Experiments 5a and 5b), 
we also performed a mixed model ANOVA with interrupter type as a within-subject factor and 
interrupter duration as a between-subject factor, including only onset times after the interruption 
in each experiment. For each main effect and interaction of interest, we reported F-statistics, p-
values and 𝜂'()#*(+, .  
 
Experiment 6 (Repeating Background Noises on Every Trial) 
Stimuli: For each of the 160 background noises, we synthesized 20 7-second-long exemplars and 
cut each exemplar into two 3.25-second-long sounds to yield a total of 40 unique waveforms for 
each background noise. For each of these 6,400 unique background noise waveforms, each of 
the 160 foregrounds could appear at each of 10 possible temporal positions (foreground onset 
times of 250, 500, 750, 1000, 1250, 1500, 1750, 2000, 2250, and 2500 ms) at an SNR of -8 dB, 
yielding a total of 10,240,000 possible stimuli containing a foreground sound and 6,400 possible 
stimuli consisting of background noise only. Rather than create all possible experimental stimuli, 
we pre-generated enough stimulus sets (see Procedure below) such that each participant in our 
sample would receive a unique set, generating only the stimuli needed for these sets.   
 
Procedure: For each subject, we randomly selected 8 of the 160 possible backgrounds to repeat 
on every trial in blocks of 40 trials. On half of these trials, the background noise appeared in 
isolation. The other half of these trials also contained a randomly selected foreground randomly 
assigned to one of the foreground onset time conditions such that each foreground onset time 
condition occurred twice during a block. Each background noise was a unique exemplar, and 
foregrounds were never repeated. The order of the blocks was chosen at random, as was the 
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order of stimuli within a block. On each trial, participants judged whether the stimulus contained 
one or two sound sources and were not explicitly informed that backgrounds would repeat. 
 
Participants: A total of 289 participants were recruited through Prolific. Of these, 93 participants 
were excluded either because they failed the headphone check task, had self-reported hearing 
loss, withdrew from the experiment, or completed less than 90% of experimental trials. No 
participants were excluded due to low task performance (average d’ < 0.8). This resulted in a total 
of 196 participants included in data analyses. Of these participants, 90 identified as female, 100 
as male, and 6 as nonbinary. The average age of participants was 36.5 (s.d. = 11.9). All 
participants were unique to this experiment. 
 
Sample size: We targeted the same sample size as in Experiment 7 (which is presented later in 
the text, but which was in practice run first), but due to the nature of the screening procedure, the 
actual sample was slightly below the target sample size. 
 
Statistics and data analysis: We calculated a hit rate for each of the 10 experimental conditions 
(10 foreground onset times) and a single false alarm rate using the background-only trials, then 
quantified detection performance as d’. We performed a repeated measures ANOVA to analyze 
the effect of foreground onset time on foreground detection performance. We assumed data was 
normally distributed and evaluated this by eye. Mauchly's test indicated that the assumption of 
sphericity had not been violated. For each main effect and interaction of interest, we reported F-
statistics, p-values and 𝜂'()#*(+, .  
 
Experiment 7 (Non-repeated Background Noises with Random Foreground Pairings) 
Stimuli: For each of the 160 background noises from Experiment 1, we constructed stimuli in 
which each of the 160 foregrounds appeared at each of 10 possible temporal positions 
(foreground onset times of 250, 500, 750, 1000, 1250, 1500, 1750, 2000, 2250, and 2500 ms) at 
an SNR of -8 dB. This yielded a total of 256,000 stimuli containing a foreground sound. We also 
created an additional 160 stimuli that consisted of the background noise only.  
 
Procedure: The experiment consisted of 320 trials. Half of these trials included the 160 
background noises without a foreground sound. The other half of these trials contained a 
randomly selected foreground randomly assigned to one of the foreground onset time conditions. 
On each trial, participants judged whether the stimulus contained one or two sound sources. 
 
Participants: A total of 361 participants were recruited through Prolific. Of these, 158 participants 
were excluded either because they failed the headphone check task, had self-reported hearing 
loss, withdrew from the experiment, or completed less than 90% of experimental trials. Finally, 2 
participants were excluded due to low task performance (average d’ < 0.8). This resulted in a total 
of 201 participants included in data analyses. Of these participants, 82 identified as female, 112 
as male, and 5 as nonbinary (2 participants did not provide a response). The average age of 
participants was 37.1 (s.d. = 12.0). All participants were unique to this experiment. 
 
Sample size: Because we expected that the randomized foreground-background pairings used in 
this experiment would increase the variability of the results, we targeted double the sample size 
of Experiment 1 (n=93) to help ensure sufficient power. Due to the nature of the screening 
procedure, the actual sample was slightly above the target sample size. 
 
Statistics and data analysis: We calculated a hit rate for each of the 10 experimental conditions 
(10 foreground onset times) and a single false alarm rate using the background-only trials, then 
quantified detection performance as d’. We performed a repeated measures ANOVA to analyze 
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the effect of foreground onset time on foreground detection performance. We assumed data was 
normally distributed and evaluated this by eye. Mauchly's test indicated that the assumption of 
sphericity had not been violated. To compare foreground detection performance for repeated 
(Experiment 6) versus non-repeated (Experiment 7) backgrounds, we performed a mixed model 
ANOVA with foreground onset time as a within-subject factor and background type as a between-
subject factor. To compare foreground detection performance for controlled (Experiment 1) versus 
non-controlled (Experiment 7) foreground-background pairings, we performed a mixed model 
ANOVA with foreground onset time as a within-subject factor and foreground-background pairing 
type as a between-subject factor. For each main effect and interaction of interest, we reported F-
statistics, p-values and 𝜂'()#*(+, . To estimate the overall magnitude of improvement in detection 
performance with foreground onset time, we fit an elbow function to the results and quantified the 
delay benefit as the difference between the values of the elbow function at the first (250 ms) and 
last (2500 ms) foreground onset times. We performed permutation tests to test for differences in 
the delay benefit across experiments (Experiment 6 versus Experiment 7 or Experiment 1 versus 
Experiment 7) by randomly shuffling participants across experiments and estimating the 
difference between the magnitude of improvement in each set of shuffled data. We repeated this 
procedure 10,000 times to build up a distribution of the test statistic (difference in delay benefit) 
under the null hypothesis (there is no difference across experiments) and calculated the p-value 
(two-tailed) as the proportion of times that absolute values from the null distribution were at least 
as large as the actual absolute difference in delay benefit between experiments. We performed 
an analogous permutation test to test for a difference in the timescale of improvement (quantified 
as the location of the elbow point) between Experiments 1 and 7.  
 
To ensure that differences in the delay benefit were not driven by Experiment 6 having more 
participants with near-ceiling performance compared to Experiment 7, we ran a control analysis 
in which we selected groups of participants from each experiment to have similar asymptotic 
performance. To avoid errors of non-independence, we used data from foreground onset times 
of 1500, 2000, and 2500 ms to select the participant groups, and then measured the delay benefit 
using the data from the remaining foreground onset times for these participants. In practice, we 
found that naively matching asymptotic performance for the “selection” conditions (1500, 2000, 
and 2500 ms) did not result in fully matched performance for the held-out conditions (1250, 1750, 
and 2250 ms), presumably because the group selection criterion (i.e., the difference in 
performance between groups for the 1500, 2000, and 2500 ms conditions) had some contribution 
from noise, which left a residual difference in performance between groups in the held-out 
conditions. To minimize this difference in performance, we imposed a bias during the matching 
procedure and selected participant groups whose difference in performance in the selection 
conditions was as close as possible to the bias value. This bias value was determined by selecting 
the value which minimized the performance difference between groups via three-fold cross-
validation across the three foreground onset times used as the selection conditions. In this way 
we obtained participant groups whose performance was approximately matched in independent 
data from the regime in which performance was asymptotic. 
 
Experiment 8 (Repeating Background Noises on Alternate Trials) 
Stimuli: The stimuli were identical to those of Experiment 6 but were sampled differently over the 
course of the experiment due to the constraints of the design (see Procedure below). 
 
Procedure: For each subject, we randomly selected 8 of the 160 possible backgrounds to repeat 
on every other trial in blocks of 40 trials. On half of these trials, the background noise appeared 
in isolation. The other half of these trials contained a randomly selected foreground randomly 
assigned to one of the foreground onset time conditions such that each foreground onset time 
condition occurred once. For the remaining trials, we randomly selected 80 backgrounds to serve 
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as “non-repeating” trials. Each of these backgrounds appeared twice: once in isolation and once 
with a randomly selected foreground randomly assigned to one of the foreground onset time 
conditions. These non-repeating background trials were randomly ordered subject to the 
constraint that each foreground onset time condition (for the non-repeating backgrounds) 
occurred once during a block. Each background noise was a unique exemplar, and foregrounds 
were never repeated. The order of the blocks was chosen at random. On each trial, participants 
judged whether the stimulus contained one or two sound sources and were not explicitly informed 
that backgrounds would repeat. 
 
Participants: A total of 528 participants were recruited through Prolific. Of these, 153 participants 
were excluded either because they failed the headphone check task, had self-reported hearing 
loss, withdrew from the experiment, completed less than 90% of experimental trials, or did not 
complete all critical trials at the start and end of each block. Finally, 7 participants were excluded 
due to low task performance (average d’ < 0.8). This resulted in a total of 368 participants included 
in data analyses. Of these participants, 181 identified as female, 178 as male, 5 as nonbinary (4 
participants did not provide a response). The average age of participants was 38.3 (s.d.=12.7). 
All participants were unique to this experiment. 
 
Sample size: We targeted the same sample size as in Experiment 6 (n=196) but multiplied it by 
two to account for the fact that there were half as many trials per condition (20 total conditions: 
10 foreground onset times crossed with background type: repeated or non-repeated) in this 
experiment. Due to the nature of the screening procedure, the actual sample was slightly below 
the target sample size.  
 
Statistics and data analysis: We calculated a hit rate for each of the 20 experimental conditions 
(10 foreground onset times crossed with 2 background types) and false alarm rates using the 
background-only trials for each background type (repeated or non-repeated), then quantified 
detection performance as d’. We performed a repeated measures ANOVA to analyze the effects 
of foreground onset time and background repetition on foreground detection performance. We 
assumed data was normally distributed and evaluated this by eye. Mauchly's test indicated that 
the assumption of sphericity had not been violated. For each main effect and interaction of 
interest, we reported F-statistics, p-values and 𝜂'()#*(+, . To test for a difference in the delay benefit 
between background types (repeated versus non-repeated), we performed a permutation test 
using the same procedure described above in Experiment 7. The control analysis matching 
asymptotic performance was also performed using the same procedure described above for 
Experiment 7. However, we note that performing this analysis for Experiment 8 necessitated using 
distinct but partially overlapping sets of participants for the repeated and non-repeated conditions, 
because the same participants completed both conditions in the original experiment. 
 
Experiment 9 (Stationary Noise) 
Stimuli: To create stationary noise backgrounds, we replaced each of the 160 texture 
backgrounds with spectrally matched noise. The spectrally matched noise was generated by 
setting the Fourier amplitudes of a noise signal equal to the Fourier amplitudes of the 
corresponding sound texture, randomizing the phases, and then performing the inverse Fourier 
transform. For each of the 160 foreground-background pairs, we constructed stimuli in which the 
foreground appeared at each of 10 possible temporal positions (foreground onset times of 250, 
500, 750, 1000, 1250, 1500, 1750, 2000, 2250, and 2500 ms) and each of 2 possible SNRs (-6 
and -10 dB). This yielded a total of 3200 stimuli containing a foreground sound. We also created 
an additional 160 stimuli that consisted of the stationary background noise only. 
 
Procedure: The procedure was identical to that of Experiment 1. 
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Participants: A total of 294 participants were recruited through Prolific. Of these, 86 participants 
were excluded either because they failed the headphone check task, had self-reported hearing 
loss, withdrew from the experiment, or completed less than 90% of experimental trials. Finally, 3 
participants were excluded due to low task performance (average d’ < 0.8). This resulted in a total 
of 205 participants included in data analyses. Of these participants, 84 identified as female, 119 
as male, and 2 as nonbinary. The average age of participants was 37.6 (s.d. = 12.3). All 
participants were unique to this experiment. 
 
Sample size: We did not have pilot data for this experiment. Thus, we targeted double the sample 
size of Experiment 1 because of the possibility that the effect of foreground onset time might be 
smaller. Due to the nature of the screening procedure, we were slightly above the target sample 
size. 
 
Statistics and data analysis: We calculated a hit rate for each of the 20 experimental conditions 
(10 foreground onset times crossed with 2 SNRs) and a single false alarm rate using the 
background-only trials, then quantified detection performance as d’. We performed a repeated 
measures ANOVA to analyze the effect of foreground onset time and SNR on foreground 
detection performance. We assumed data was normally distributed and evaluated this by eye. 
Mauchly's test indicated that the assumption of sphericity had not been violated. For each main 
effect and interaction of interest, we reported F-statistics, p-values and 𝜂'()#*(+, . To analyze the 
effect of stationarity on the pattern of foreground detection performance, we compared the results 
of Experiment 9 (more stationary spectrally matched noise backgrounds) to the pooled results of 
Experiments 1 and 7 (less stationary texture backgrounds; data from Experiments 1 and 7 were 
pooled to increase power given that they showed very similar results). To test for differences in 
both the magnitude and the timescale of improvement in foreground detection performance 
between background types (textures versus spectrally matched noises), we performed 
permutation tests using the same procedure described above in Experiment 7. The control 
analysis matching asymptotic performance was performed using the same procedure described 
above in Experiment 7. 
 
Foreground-Background Similarity Analysis 
Selection of stimulus pairings: We divided the foreground-background pairings from Experiment 
7 (in which foregrounds and backgrounds were randomly paired) into two groups. The groups 
were selected to be matched in a measure of spectral difference between foreground and 
background, but to differ in the difference between foreground and background in a 
spectrotemporal filter basis. Specifically, for each foreground and background, we measured the 
mean excitation pattern as a summary measure of the spectrum. We also measured the power in 
each of the 541 PCA-derived spectrotemporal filters used in the observer model. Then, for each 
foreground-background pair, we computed the Euclidean distance between the excitation 
patterns and between the spectrotemporal filter powers for the two sounds. Because the two 
distances are on different scales, we performed min-max normalization for each to scale them 
between 0 and 1. Next, to select pairings, we calculated the ratio of the spectrotemporal distance 
to the spectral distance. This ratio is largest when the spectrotemporal distance is large and the 
spectral distance is small. We then used this measure to split pairings into two groups (low and 
high spectrotemporal similarity) subject to the constraint that the two groups of pairings contained 
the same number of occurrences of each foreground and background. This ensures that the 
results we see are due to the pairings rather than to differences in the specific foregrounds or 
backgrounds in the two stimulus groups. The free parameter in this procedure was the proportion 
of total pairings included in the two groups (including all pairings maximized the number of pairings 
in each group, but led to a smaller difference between groups than if not all pairings were included. 
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We opted to use 75% of all possible pairings, discarding the middle 25% of pairings surrounding 
the median spectrotemporal distance. This yielded groups containing 9,600 pairings. Because 
participants were presented with randomly chosen pairings, not all of these 9,600 pairings had 
been presented to participants (6,923 of the large spectrotemporal distance group and 6,854 of 
the small spectrotemporal distance group were actually used in the experiment). Figure S5 plots 
the results separately for trials whose stimuli fell into one group or the other. 
 
Statistics and data analysis: Re-analyzing the data from Experiment 7, we calculated a hit rate for 
each of the 2 groups of pairings for each of the 10 foreground onset times. Using the false alarm 
rate from the background-only trials of Experiment 7, we quantified detection performance as d’. 
We performed a repeated measures ANOVA to analyze the effect of foreground onset time and 
foreground-background similarity on foreground detection performance. We assumed data was 
normally distributed and evaluated this by eye. Mauchly's test indicated that the assumption of 
sphericity had not been violated. For each main effect and interaction of interest, we reported F-
statistics, p-values and 𝜂'()#*(+, . To test for differences in the timescale of improvement in 
foreground detection performance between pairing types (more similar versus less similar), we 
performed permutation tests using the same procedure described above for Experiment 7. 
 
Experiment 10 (Harmonic Foregrounds) 
Stimuli: To obtain a set of (approximately) harmonic foreground sounds, we selected human 
vocalizations and musical instrument sounds from a dataset of isolated sound events (GISE-51 
training set (21)). Specifically, we selected human vocalization sounds from the “human_speech”, 
“laughter” and “screaming” categories and selected musical instrument sounds from the “gong”, 
“guitar”, “harmonica”, “harp”, “marimba_and_xylophone”, “organ”, “piano”, and “trumpet” 
categories. For each sound in the training set category, we used YIN (22) to measure the average 
periodicity (one minus aperiodicity) in a sliding 0.5 s window, discarding windowed segments that 
were mostly quiet or were outside of a periodicity range of 0.9 to 0.99. We set the lower bound to 
ensure selected sounds would be highly periodic and set the upper bound because windowed 
segments whose periodicity was greater than 0.99 tended to be tones (e.g., dial tones present in 
clips labeled as “human_speech”) rather than speech or musical instruments. From the windowed 
segments of a given sound, we selected the segment with the maximum periodicity (i.e., the most 
harmonic segment). This resulted in a single 0.5 s clip for each sound in the training set categories 
described above. Finally, we removed any sounds that were near duplicates (by measuring the 
power in a set of spectrotemporal filters, computing the correlation of spectrotemporal filter power 
across sounds, and removing sounds whose correlation exceeded 0.8) or had an estimated F0 
below 100 Hz or above 1000 Hz. From the sounds that remained, we chose the most periodic 
from each category, selecting 40 examples of human speech, 20 examples of laughter and 
screaming each, as well as 10 examples from each musical instrument category (see Table S3 
for a list of the selected sounds). 
 
Procedure: The procedure was identical to that of Experiment 7. 
 
Participants: A total of 485 participants were recruited through Prolific. Of these, 193 participants 
were excluded either because they failed the headphone check task, had self-reported hearing 
loss, withdrew from the experiment, or completed less than 90% of experimental trials. Finally, 5 
participants were excluded due to low task performance (average d’ < 0.8). This resulted in a total 
of 287 participants included in data analyses. Of these participants, 127 identified as female, 151 
as male, and 3 as nonbinary (6 participants did not provide a response). The average age of 
participants was 32.2 (s.d. = 9.7). All participants were unique to this experiment. 
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Sample size: Because we did not have pilot data for this experiment, we initially targeted a sample 
size double that of Experiment 1 to account for the possibility that the effect of foreground onset 
time might be smaller. However, we found it difficult to reliably fit elbow functions to this data 
because the effect of foreground onset time was so small. Thus, we increased the sample size 
by about 50% to improve the reliability of the elbow function fits to this data.  
 
Statistics and data analysis: We calculated a hit rate for each of the 10 experimental conditions 
(10 foreground onset times) and a single false alarm rate using the background-only trials, then 
quantified detection performance as d’. We performed a repeated measures ANOVA to analyze 
the effect of foreground onset time on foreground detection performance. We assumed data was 
normally distributed and evaluated this by eye. Mauchly's test indicated that the assumption of 
sphericity had not been violated. For each main effect and interaction of interest, we reported F-
statistics, p-values and 𝜂'()#*(+, . To analyze the effect of harmonicity on the pattern of foreground 
detection performance, we compared the results of Experiment 10 (harmonic foregrounds) to the 
pooled results of Experiments 1 and 7 (less harmonic foregrounds; data from Experiments 1 and 
7 were pooled to increase power given that they showed very similar results). To test for 
differences in both the magnitude and the timescale of improvement in foreground detection 
performance between foreground types, we performed permutation tests using the same 
procedure described above in Experiment 7. The control analysis matching asymptotic 
performance was also performed using the same procedure described above in Experiment 7. 
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SI Figures & Tables 

 
Figure S1. Experiment 4: Benefit of background exposure persists despite knowing what to listen 
for. 
(A) Experiment 4 task. On each trial, participants first heard a foreground sound in isolation (left, black), 
followed by continuous background noise (right, gray). Half of the trials contained the cued sound 
superimposed on the background (e.g., trial 2), and participants judged whether the stimulus contained the 
cued sound. Because detection performance typically benefits from knowing what to listen for (23), we 
reduced the SNR of the foreground relative to the background to approximately match the level of 
performance observed in Experiment 1.  (B) Experiment 4 results. Average foreground detection 
performance (quantified as d’; green circles) is plotted as a function of SNR and foreground onset time. 
Shaded regions plot standard errors. Dashed lines plot elbow function fit. Solid line below main axis plots 
one standard deviation above and below the median elbow point, obtained by fitting elbow functions to the 
results averaged over SNR and bootstrapping over participants; dot on this line plots the fitted elbow point 
from the complete participant sample. 
 

Experiment 4: Cued Detection

A

B
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Figure S2. Observer model results for different window sizes. 
(A) Human-model correlations for different window sizes. The Spearman correlation between the model 
results and the human results from Experiment 1 is plotted as a function of past window length for each 
present window length (100ms in purple, 250 ms in orange, and 500 ms in green). (B) Overall model 
performance for different window sizes. The overall model performance (computed by averaging detection 
performance over SNR and foreground onset time) is plotted as a function of past window length for each 
present window length. Same conventions as A. (C) Model results using 1000 ms past window. Each panel 
plots model foreground detection performance as a function of SNR and foreground onset time for a 
different present window length (100ms left, purple; 250 ms middle, orange; 500 ms right, green) using a 
fixed past window length of 1000 ms. Shaded regions plot standard deviations of performance obtained by 
bootstrapping over stimuli. (D) Model results using 1250 ms past window. Same conventions as C but using 
a fixed past window length of 1250 ms. 
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Figure S3. Experiment 6: Repetition of background noise enhances foreground detection. 
Average foreground detection performance (quantified as d’) is plotted as a function of foreground onset 
time for the first half of trials (light red circles) versus the second half of trials (dark red circles) within a 
block. Shaded regions plot standard errors. Dashed lines plot elbow function fit. Vertical brackets denote 
the delay benefit.  
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Figure S4. Experiments 1 & 7: Benefit of exposure to background noise is unaffected by choice of 
foreground-background pairings. 
Average foreground detection performance (quantified as d’) is plotted as a function of foreground onset 
time for Experiment 1 (controlled foreground-background pairings; blue circles) versus Experiment 7 
(uncontrolled foreground-background pairings; gray circles). Shaded regions plot standard errors. Dashed 
lines plot elbow function fit. Solid lines below main axis plot one standard deviation above and below the 
median elbow points (Experiment 1 shown in blue; Experiment 7 shown in gray), obtained by fitting elbow 
functions to the results averaged over SNR and bootstrapping over participants; dots on these lines plot 
the fitted elbow points from the complete participant samples. Vertical brackets denote the delay benefit.  
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Figure S5. Effect of background exposure depends on foreground-background similarity. 
(A) Spectral and spectrotemporal similarity of foreground-background pairs. The average normalized 
distance between foregrounds and backgrounds is plotted as a function of distance type for two groups of 
foreground-background pairings. The two groups of pairings were approximately matched in spectral 
distance but differed in spectrotemporal distance. Error bars plot standard deviations. (B) Foreground-
background similarity results. Average foreground detection performance (quantified as d’) is plotted as a 
function of foreground onset time for the two groups of foreground-background pairs. Shaded regions plot 
standard errors. Dashed lines plot elbow function fit. Solid lines below main axis plot one standard deviation 
above and below the median elbow points (more similar pairs shown in gray; less similar pairs shown in 
black), obtained by bootstrapping over participants; dots on these lines plot the fitted elbow points from the 
complete participant samples.  
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Table S1. AudioSet labels that were excluded in the process of obtaining texture sounds from which the 
background noises were drawn. 
 

Speech 
0,/m/09x0r,”Speech” 13,/t/dd00135,”Children shouting” 
1,/m/05zppz,”Male speech, man speaking” 15,/m/02rtxlg,”Whispering”  
2,/m/02zsn,”Female speech, woman speaking” 27,/m/015lz1,”Singing” 
3,/m/0ytgt,”Child speech, kid speaking” 28,/m/0l14jd,”Choir” 
4,/m/01h8n0,”Conversation” 29,/m/01swy6,”Yodeling” 
5,/m/02qldy,”Narration, monologue” 30,/m/02bk07,”Chant” 
6,/m/0261r1,”Babbling” 31,/m/01c194,”Mantra” 
7,/m/0brhx,”Speech synthesizer” 32,/t/dd00003,”Male singing” 
8,/m/07p6fty,”Shout” 33,/t/dd00004,”Female singing” 
9,/m/07q4ntr,”Bellow” 34,/t/dd00005,”Child singing” 
10,/m/07rwj3x,”Whoop” 35,/t/dd00006,”Synthetic singing” 
11,/m/07sr1lc,”Yell” 36,/m/06bxc,”Rapping” 
12,/m/04gy_2,”Battle cry”  
 
Music 
137,/m/04rlf,”Music” 210,/m/0192l,”Bagpipes” 
138,/m/04szw,”Musical instrument” 211,/m/02bxd,”Didgeridoo” 
139,/m/0fx80y,”Plucked string instrument” 212,/m/0l14l2,”Shofar” 
140,/m/0342h,”Guitar” 213,/m/07kc_,”Theremin” 
141,/m/02sgy,”Electric guitar” 214,/m/0l14t7,”Singing bowl” 
142,/m/018vs,”Bass guitar” 215,/m/01hgjl,”Scratching (performance 

technique)” 
143,/m/042v_gx,”Acoustic guitar” 216,/m/064t9,”Pop music” 
144,/m/06w87,”Steel guitar, slide guitar” 217,/m/0glt670,”Hip hop music” 
145,/m/01glhc,”Tapping (guitar technique)” 218,/m/02cz_7,”Beatboxing” 
146,/m/07s0s5r,”Strum” 219,/m/06by7,”Rock music” 
147,/m/018j2,”Banjo” 220,/m/03lty,”Heavy metal” 
148,/m/0jtg0,”Sitar” 221,/m/05r6t,”Punk rock” 
149,/m/04rzd,”Mandolin” 222,/m/0dls3,”Grunge” 
150,/m/01bns_,”Zither” 223,/m/0dl5d,”Progressive rock” 
151,/m/07xzm,”Ukulele” 224,/m/07sbbz2,”Rock and roll” 
152,/m/05148p4,”Keyboard (musical)” 225,/m/05w3f,”Psychedelic rock” 
153,/m/05r5c,”Piano” 226,/m/06j6l,”Rhythm and blues” 
154,/m/01s0ps,”Electric piano” 227,/m/0gywn,”Soul music” 
155,/m/013y1f,”Organ” 228,/m/06cqb,”Reggae” 
156,/m/03xq_f,”Electronic organ” 229,/m/01lyv,”Country” 
157,/m/03gvt,”Hammond organ” 230,/m/015y_n,”Swing music” 
158,/m/0l14qv,”Synthesizer” 231,/m/0gg8l,”Bluegrass” 
159,/m/01v1d8,”Sampler” 232,/m/02x8m,”Funk” 
160,/m/03q5t,”Harpsichord” 233,/m/02w4v,”Folk music” 
161,/m/0l14md,”Percussion” 234,/m/06j64v,”Middle Eastern music” 
162,/m/02hnl,”Drum kit” 235,/m/03_d0,”Jazz” 
163,/m/0cfdd,”Drum machine” 236,/m/026z9,”Disco” 
164,/m/026t6,”Drum” 237,/m/0ggq0m,”Classical music” 
165,/m/06rvn,”Snare drum” 238,/m/05lls,”Opera” 
166,/m/03t3fj,”Rimshot” 239,/m/02lkt,”Electronic music” 
167,/m/02k_mr,”Drum roll” 240,/m/03mb9,”House music” 
168,/m/0bm02,”Bass drum” 241,/m/07gxw,”Techno” 
169,/m/011k_j,”Timpani” 242,/m/07s72n,”Dubstep” 
170,/m/01p970,”Tabla” 243,/m/0283d,”Drum and bass” 
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171,/m/01qbl,”Cymbal” 244,/m/0m0jc,”Electronica” 
172,/m/03qtq,”Hi-hat” 245,/m/08cyft,”Electronic dance music” 
173,/m/01sm1g,”Wood block” 246,/m/0fd3y,”Ambient music” 
174,/m/07brj,”Tambourine” 247,/m/07lnk,”Trance music” 
175,/m/05r5wn,”Rattle (instrument)” 248,/m/0g293,”Music of Latin America” 
176,/m/0xzly,”Maraca” 249,/m/0ln16,”Salsa music” 
177,/m/0mbct,”Gong” 250,/m/0326g,”Flamenco” 
178,/m/016622,”Tubular bells” 251,/m/0155w,”Blues” 
179,/m/0j45pbj,”Mallet percussion” 252,/m/05fw6t,”Music for children” 
180,/m/0dwsp,”Marimba, xylophone” 253,/m/02v2lh,”New-age music” 
181,/m/0dwtp,”Glockenspiel” 254,/m/0y4f8,”Vocal music” 
182,/m/0dwt5,”Vibraphone” 255,/m/0z9c,”A capella” 
183,/m/0l156b,”Steelpan” 256,/m/0164x2,”Music of Africa” 
184,/m/05pd6,”Orchestra” 257,/m/0145m,”Afrobeat” 
185,/m/01kcd,”Brass instrument” 258,/m/02mscn,”Christian music” 
186,/m/0319l,”French horn” 259,/m/016cjb,”Gospel music” 
187,/m/07gql,”Trumpet” 260,/m/028sqc,”Music of Asia” 
188,/m/07c6l,”Trombone” 261,/m/015vgc,”Carnatic music” 
189,/m/0l14_3,”Bowed string instrument” 262,/m/0dq0md,”Music of Bollywood” 
190,/m/02qmj0d,”String section” 263,/m/06rqw,”Ska” 
191,/m/07y_7,”Violin, fiddle” 264,/m/02p0sh1,”Traditional music” 
192,/m/0d8_n,”Pizzicato” 265,/m/05rwpb,”Independent music” 
193,/m/01xqw,”Cello” 266,/m/074ft,”Song” 
194,/m/02fsn,”Double bass” 267,/m/025td0t,”Background music” 
195,/m/085jw,”Wind instrument, woodwind 
instrument” 

268,/m/02cjck,”Theme music” 

196,/m/0l14j_,”Flute” 269,/m/03r5q_,”Jingle (music)” 
197,/m/06ncr,”Saxophone” 270,/m/0l14gg,”Soundtrack music” 
198,/m/01wy6,”Clarinet” 271,/m/07pkxdp,”Lullaby” 
199,/m/03m5k,”Harp” 272,/m/01z7dr,”Video game music” 
200,/m/0395lw,”Bell” 273,/m/0140xf,”Christmas music” 
201,/m/03w41f,”Church bell” 274,/m/0ggx5q,”Dance music” 
202,/m/027m70_,”Jingle bell” 275,/m/04wptg,”Wedding music” 
203,/m/0gy1t2s,”Bicycle bell” 276,/t/dd00031,”Happy music” 
204,/m/07n_g,”Tuning fork” 277,/t/dd00032,”Funny music” 
205,/m/0f8s22,”Chime” 278,/t/dd00033,”Sad music” 
206,/m/026fgl,”Wind chime” 279,/t/dd00034,”Tender music” 
207,/m/0150b9,”Change ringing (campanology)” 280,/t/dd00035,”Exciting music” 
208,/m/03qjg,”Harmonica” 281,/t/dd00036,”Angry music” 
209,/m/0mkg,”Accordion” 282,/t/dd00037,”Scary music” 
 
Sourceless 
500,/m/028v0c,”Silence” 503,/m/0hdsk,”Chirp tone” 
501,/m/01v_m0,”Sine wave” 504,/m/0c1dj,”Sound effect” 
502,/m/0b9m1,”Harmonic” 505,/m/07pt_g0,”Pulse” 
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Table S2. Foreground-background pairings used in Experiments 1-5 and 9. Experiments 6-8 used the same 
set of foregrounds and backgrounds but paired randomly. Experiment 10 used the same backgrounds but 
different foregrounds (see Table S3). 
 

# Foreground Background 
(YouTube ID) 

 

# Foreground Background 
(YouTube ID) 

1 cuckoo clock f4BDxEci8Nk 81 rooster BS_RcUnRB_g 
2 cutting scissors DNuH5JyeF28 82 running hard surface 4ZqibG97oXc 
3 dentist drill ujNf-Q9q8BQ 83 running gravel uREJNYW9Zgc 
4 dial tone ul285Kv4Zzw 84 run up stairs ZwFsvLQoqhw 
5 dialing auW7P6Fla1s 85 blacksmith hammering RhYlsWU4xkA 
6 rotary dialer LrP3e_XDEn0 86 saltshaker WGJvqPhmbx8 
7 dialup 7CSwogGrVXE 87 sander k7JefMIMghA 
8 dice roll HgmZlVe3W18 88 school bell XoG5PD231R4 
9 dish clanking YkxxnlvB3mk 89 screw lid off C9IHMPdX_3w 
10 dog barking oDQuFo9Yl60 90 seagull EQW7Tq1TpTA 
11 dog drinking 0CahCF_csFE 91 seal 1lsFTFuLmtw 
12 dog whining u-oxLds6JvI 92 glass shattering 0SsaL_YNyjY 
13 door open 1pSbmqnIrb8 93 blowing on bottle j4AAuB9XLVA 
14 door squeak mlEy1yQpUYs 94 sheep DOIX0j6Eg98 
15 doorbell Q8G3Y_b3GKc 95 shuffling pJGThhDN_ZQ 
16 dove cooing d9lZjw66ow0 96 sipping J8dsyhhvRO0 
17 dreidel spinning 9amjTzhfO_0 97 siren FqigDul5Mts 
18 drawer close MiEfLgS0v6k 98 sleighbells uYXXcFA8NXE 
19 drawer opening k-VZj_uYyjg 99 slicing PicbqGLxpbM 
20 drinking 7A14Op2mCFQ 100 slot machine vSFbqLgy3hA 
21 dripping Kc3-d4yhnr4 101 birdsong OE94H63nLOw 
22 bass drum MRz22sll8Ko 102 splash water eTaaBEx8Uz0 
23 duck quack F1j9FIeij8g 103 stapling 17XCtcwI74Y 
24 handheld drill GyaYw1BQ7tE 104 space ship door 5eO0cJNgV74 
25 elevator door f36dN2cr4j8 105 sword fighting yPTe-JL28xU 
26 faucet J0kO9X49cIQ 106 tap dancing XoENpj5z6Oc 
27 fax -3KtNOqHb2A 107 telephone ring WXT0aIPTRXM 
28 balloon deflating Xlr0Maz4jvI 108 tennis rally ChDKSOopmUs 
29 finger tapping 14gMYPgWBk0 109 toy squeak tU5X5sCZj3U 
30 fire alarm w41FKuP0HT8 110 train warning bell -mQyAYU_Bd4 
31 fireworks 1kBruu0XiCk 111 trampoline DCHJSNDvkYs 
32 foghorn PZ4j2qcmvGk 112 bowling BOeA1ya8Bwk 
33 frog croak -e_wUbIdJuk 113 triangle Cyi_IJ2Z4Yc 
34 gavel oA96zEIi58o 114 truck backup beeping TVX2OXNhvE4 
35 geese honking AhG32tIdaaE 115 turkey gobble 6VcCuP4YeU4 
36 gong vS6ERMn4_58 116 typing IDg45ezSvZE 
37 gorilla PBuW6_LuAAk 117 walking hard surface KI5tat_bJio 
38 grandfather clock O9gqbLxkA7I 118 walking with heels Yrz6NzBsoOk 
39 gunshots bcU49USpFcY 119 whale call u2o-xqEvKUk 
40 hammer O_kxjfU50lc 120 wolves howling Cy2zzRtUDDI 
41 dribble Nf0K0I00WMY 121 writing chalkboard z_cfAqGxyT4 
42 hawk screech CHEJS1BA0_0 122 writing on whiteboard iOfxRUARYBQ 
43 horse neighing yCvz0W1Spv8 123 zipper 7aoxC_WRv3I 
44 ice machine 8K6acvCdQqU 124 crack nuts J4gtEa7HC3s 
45 jumping rope IXljCR3iqLY 125 mac startup 63USLppGyX8 
46 kazoo 4EyYLQ9QQLY 126 noisemaker aDvPcdwm0_8 
47 kettle PBe8eexve2Q 127 peeling potato VNos6WvqE-o 
48 key opening door tshdgKCaea8 128 radar beeps DmDPTWAChc0 
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49 keys jingling JjkxEDKt_WI 129 scrubbing dishes BgONm1BKM68 
50 knocking on door pDppR23BSrE 130 sports arena buzzer DK7CYXsz8TI 
51 knuckle cracking UAidYn4tDuQ 131 busy signal nIeOtZISuVw 
52 laser gun _9roxFqE_0s 132 windows startup sound PSkAi5SysFQ 
53 lion growl pGx04X2S8Vo 133 windup toy X9hEru96BO0 
54 locker closing Zb4c7wX7MGc 134 air hockey ZumNxD30rO8 
55 locker opening -x5fDrtsR-M 135 camera taking picture _eyfihZLgkE 
56 bear growling gYUb7ZEx2ig 136 heart beat LjnfmSFcv8I 
57 morse code 22rlvtV9tjY 137 owl hooting 873MpPwYc0s 
58 nose blowing X9HsMWDHhDs 138 battle sounds GfiRcVgqRhk 
59 reception desk bell 1DKHkGt6A5Y 139 monkey scream C5oSLRvLVOA 
60 bike bell 6UDbuFKXaR0 140 car alarm VXpimpAohoE 
61 pager beeps XXmxZdWEfDU 141 car crash YRixc_jc9S8 
62 paper cutter 8FNGAEJom4k 142 alarm clock qlJ1JZ5chP8 
63 paper shredder eY-Z97PApDo 143 car horn Jdm3aEGx5LI 
64 parrot MDs84SJcUlI 144 car wheels skidding YeghkUAmB7I 
65 pepper grinder NTWLwrQZ2xA 145 cash register 3LKkiKyWqlQ 
66 pet collar jingling VZwHbQCLeBY 146 castanet M4MWeVg6Rh0 
67 pig snort vsOjgzS4ZF8 147 cat meow eGE475m0FcE 
68 pinball Xwg3gNWSg1U 148 cat purring jNWjIt-qjAs 
69 ping pong J_qoxB9ytXY 149 alien sound effects CR_pvgUzL5M 
70 pool ball M9i6UvtYtpA 150 phone vibrate e5Qk-uZSDQ0 
71 popcorn popping uPYXAScbHt8 151 chainsaw revving iP5TKSoB3-Y 
72 pour out bottle OF7A3vsntYk 152 chair being raised 7xfgJ9VVGdo 
73 printer startup wfHeoPDLMaM 153 chicken cluck _Habb1lwnPM 
74 printing WjCndbbxq54 154 wind chimes KORQwq2m20I 
75 ratchet TGNzh4wMT0k 155 chopping wood RB28Vj9j-yY 
76 crow nH5SVpHQRRs 156 clipping hair IaCX2UnQZAE 
77 whistle cIUorSTElSM 157 coins dropping TL7iX2d72Y0 
78 rock fall water c6m6ZPOnAJ0 158 coin vending machine 4IEpPBzMCN4 
79 rock fall ground JOyDnPX8WRk 159 cow moo SU3VCol6mSY 
80 rocking chair gUJzqny-Ph0 160 ATM Qd1RHwg2Duw 
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Table S3. Foregrounds used in Experiment 10, taken from GISE-51 training set 
 

# Category  Stimulus ID 

 

# Category  Stimulus ID 
1 Human_speech 107100 81 Gong 209917_filtered 
2 Human_speech 92940 82 Gong 222192 
3 Human_speech 80641 83 Gong 57389 
4 Human_speech 63334 84 Gong 222191 
5 Human_speech 181948_filtered 85 Gong 57419 
6 Human_speech 106439 86 Gong 206023 
7 Human_speech 32168 87 Gong 57424 
8 Human_speech 93787_filtered 88 Gong 222923_filtered 
9 Human_speech 91076 89 Gong 222217 
10 Human_speech 278944 90 Gong 222922_filtered 
11 Human_speech 95238 91 Guitar 128844_filtered 
12 Human_speech 77409 92 Guitar 40438 
13 Human_speech 109838_filtered 93 Guitar 251187_filtered 
14 Human_speech 82710 94 Guitar 64791_filtered 
15 Human_speech 50497_filtered 95 Guitar 251161_filtered 
16 Human_speech 216567 96 Guitar 28399 
17 Human_speech 108875 97 Guitar 251156_filtered 
18 Human_speech 92951 98 Guitar 48355 
19 Human_speech 92961 99 Guitar 252448 
20 Human_speech 18287 100 Guitar 18474 
21 Human_speech 77416 101 Harmonica 116903_filtered 
22 Human_speech 235110 102 Harmonica 116897_filtered 
23 Human_speech 77421 103 Harmonica 116902 
24 Human_speech 184432_filtered 104 Harmonica 325376 
25 Human_speech 92941 105 Harmonica 330759_filtered 
26 Human_speech 371581 106 Harmonica 116887_filtered 
27 Human_speech 235114 107 Harmonica 325377 
28 Human_speech 422718_filtered 108 Harmonica 116874_filtered 
29 Human_speech 104707 109 Harmonica 116875_filtered 
30 Human_speech 92965 110 Harmonica 116869 
31 Human_speech 109865 111 Harp 53854 
32 Human_speech 104728 112 Harp 53867 
33 Human_speech 107099 113 Harp 53846 
34 Human_speech 77413 114 Harp 53864 
35 Human_speech 67627 115 Harp 373563_filtered 
36 Human_speech 106428 116 Harp 53866 
37 Human_speech 181316 117 Harp 415387 
38 Human_speech 106440 118 Harp 415463 
39 Human_speech 77412 119 Harp 415433 
40 Human_speech 92919 120 Harp 415466 
41 Laughter 132812 121 Marimba_and_xylophone 373585_filtered 
42 Laughter 364485_filtered 122 Marimba_and_xylophone 202584 
43 Laughter 171707 123 Marimba_and_xylophone 216753_filtered 
44 Laughter 95814 124 Marimba_and_xylophone 202576 
45 Laughter 174625 125 Marimba_and_xylophone 216755_filtered 
46 Laughter 411082 126 Marimba_and_xylophone 216761_filtered 
47 Laughter 198263 127 Marimba_and_xylophone 216752_filtered 
48 Laughter 266004 128 Marimba_and_xylophone 202577 
49 Laughter 57734 129 Marimba_and_xylophone 216751_filtered 
50 Laughter 172923_filtered 130 Marimba_and_xylophone 216756_filtered 
51 Laughter 132809_filtered 131 Organ 245073 
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52 Laughter 364444_filtered 132 Organ 373682_filtered 
53 Laughter 95816 133 Organ 160297 
54 Laughter 62257_filtered 134 Organ 11856 
55 Laughter 198252_filtered 135 Organ 373685_filtered 
56 Laughter 132746_filtered 136 Organ 373688 
57 Laughter 393342_filtered 137 Organ 160301 
58 Laughter 366173 138 Organ 373691_filtered 
59 Laughter 196066 139 Organ 373687_filtered 
60 Laughter 9557 140 Organ 333753 
61 Screaming 219665 141 Piano 148539_filtered 
62 Screaming 163729_filtered 142 Piano 11655_filtered 
63 Screaming 220665 143 Piano 173763_filtered 
64 Screaming 219663 144 Piano 351928 
65 Screaming 59163 145 Piano 11656_filtered 
66 Screaming 131709 146 Piano 382533_filtered 
67 Screaming 219666_filtered 147 Piano 32019_filtered 
68 Screaming 9434_filtered 148 Piano 11644_filtered 
69 Screaming 58794 149 Piano 83132 
70 Screaming 104035 150 Piano 11626_filtered 
71 Screaming 222586 151 Trumpet 374138_filtered 
72 Screaming 351630 152 Trumpet 357321_filtered 
73 Screaming 104028_filtered 153 Trumpet 357560_filtered 
74 Screaming 261853_filtered 154 Trumpet 247248_filtered 
75 Screaming 166154_filtered 155 Trumpet 247220_filtered 
76 Screaming 42849_filtered 156 Trumpet 247276_filtered 
77 Screaming 221151 157 Trumpet 357419 
78 Screaming 104033 158 Trumpet 247216_filtered 
79 Screaming 220291 159 Trumpet 247110 
80 Screaming 61219 160 Trumpet 247381 
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