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Models optimized for real-world tasks reveal
the task-dependent necessity of precise
temporal coding in hearing

Mark R. Saddler 1,2,3 & Josh H. McDermott 1,2,3,4

Neurons encode information in the timing of their spikes in addition to their
firing rates. Spike timing is particularly precise in the auditory nerve, where
action potentials phase lock to sound with sub-millisecond precision, but its
behavioral relevance remains uncertain. We optimized machine learning
models to perform real-world hearing tasks with simulated cochlear input,
assessing the precision of auditory nerve spike timing needed to reproduce
human behavior. Models with high-fidelity phase locking exhibited more
human-like sound localization and speech perception than models without,
consistent with an essential role in human hearing. However, the temporal
precision needed to reproduce human-like behavior varied across tasks, as did
the precision that benefited real-world task performance. These effects sug-
gest that perceptual domains incorporate phase locking to different extents
depending on the demands of real-world hearing. The results illustrate how
optimizing models for realistic tasks can clarify the role of candidate neural
codes in perception.

Sensory systems encode information about the environment in the
spiking activity of neurons. Decades of experiments have clarified how
stimulus properties are represented at different stages of neural pro-
cessing, but less is known about how this information gives rise to
complex human behavior.

In perceptual science, ideal observer models have long been used
to analyzewhich features of a neural code contribute to behavior1–3. An
ideal observer is the statistically optimal solution to a perceptual task
given the information available at some stage of neural processing4.
Since evolutionary pressures drive biological perceptual systems in the
direction of optimal performance for tasks that are important in the
natural environment, comparisons of anorganism’s behavior to that of
optimal task solutions under candidate biological constraints (e.g., a
type of neural code) can reveal whether the organism is also operating
under those constraints. This approach has produced rigorous com-
putational accounts of some aspects of vision5–9 and hearing2,10–14.
However, ideal observers are limited to tasks for which provably
optimal solutions can be derived (i.e., for which probability

distributions of the generative parameters can be specified), preclud-
ing most real-world behaviors. Because real-world tasks are the ones
that biological systems are likely to have been optimized for, ideal
observers have had limited applicability in domains where they might
otherwise be most useful.

Here, we propose machine learning as an alternative approach to
link neural coding to behavior. Contemporary machine learning
models are expressive functions that canbeoptimized toperformreal-
world tasks with natural stimuli, “learning” solutions from empirical
distributions of stimuli and labels rather than mathematical descrip-
tions of a task. In contrast to analytically derived optimal solutions, the
solutions found via an optimization process are not guaranteed to be
optimal (for instance, the optimization procedure could get stuck in
local optima, and/or the model class being optimized could be sub-
optimal for the problem). However, optimization drives a model
towards better performance, such that the resulting model may
nonetheless reveal the characteristics of a system optimized for a
problem under particular constraints. In this way, machine learning
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offers an alternative to the traditional ideal observer approach for real-
world perception problems that can only be specified empirically.
Previousworkhas shown that human-like behavior can emerge in deep
artificial neural networks optimized for natural tasks15–20, consistent
with the idea that humans are shaped by optimization for such tasks.
We propose that comparing the behavior of models optimized to
perform tasks using different neural representations can reveal the
aspects of neural coding necessary for human behavior, and the eco-
logical pressures that drive their use.

Here, we apply this general approach to the problem of temporal
coding. Neurons transmit information in the precise timing of their
spikes21 in addition to their time-averaged firing rates. Temporal cod-
ing has been identified across multiple sensory modalities22–26, but
spike timing is arguably most precise in the auditory nerve, where
action potentials align to the temporal structure of sound with sub-
millisecond precision. This precise spike timing plausibly helps to
encode the “fine structure” of a sound waveform (i.e., individual
pressure oscillations; Fig. 1a). Mammalian auditory nerve fibers phase
lock to sound frequencies as high as 3 to 5 kHz27–29, such that the
auditory system in principle has access to this information from the
outset. However, whether this information is actually used by the brain
remains among the most debated issues in hearing science30–32.

The one aspect of hearing widely believed to rely on high-fidelity
phase locking is sound localization, which depends in part on
microsecond-level timing differences between the two ears. Neural
circuits for extracting these timing differences from stimulus fine
structure are found in many non-human animals. However, for other
aspects of hearing there is no consensus.

The issue has remainedunresolved for several reasons. First, there
is no conclusive evidence for monaural circuits that could extract the
information in spike timing. The precision of temporal coding
degrades with each synapse along the ascending auditory pathway33,34,
such that physiological mechanisms for extracting information from
high-frequencyphase locking are likely to be situated early. Yet despite
considerable effort, no such mechanisms for extracting phase locking
monaurally have been discovered31,32. Second, causal manipulations of
phase locking are impractical due to the difficulty of manipulating the
nerve in vivo, and because non-human animals do not exhibit many
human auditory behaviors. Third, attempts to address the issue psy-
chophysically have been inconclusive32,35, despite widespread propo-
sals that phase locking is critical for hearing in noise36–40. The issue is
important to resolve for the design of cochlear implants, which at
present generally do not reproduce the phase locking seen in the
normal ear, and for understanding how different forms of hearing loss
(some of which are argued to affect the fidelity of temporal coding41)
affect behavior.

In addition to not knowing whether and when temporal coding is
used by the auditory system, it has also remained unclear why it would
or would not be used. Even for sound localization, this remains
unsettled, as the upper frequency limit of interaural time difference
judgments is lower than the presumptive limit of phase locking in the
nerve42–44. Although there are physiological correlates of this limit
(cells that provide input to brainstem binaural circuits exhibit degra-
ded synchrony above 1 kHz)45, it is not well understood in normative
terms. This question has remained difficult to answer because until
recently it was infeasible to model real-world auditory behavior, leav-
ing it unclear to what extent precise timing in the input was compu-
tationally important for audition. If phase locking is not needed to
obtain good performance in natural auditory tasks, and/or if the cir-
cuits to extract it monaurally are prohibitively expensive to imple-
ment, it might be discarded by the downstream auditory system.

Classical ideal observers have been applied to aspects of this
problem, but were restricted to simple tasks with artificial stimuli (e.g.,
discrimination of single frequencies2,12). The resulting models gen-
erally overestimate human performance2, plausibly because human

perceptual systems are not optimized for such simple tasks and arti-
ficial stimuli. Our approach was to instead investigate the issue using
models optimized for ecological tasks, by training machine learning
systems to perform such tasks using simulated auditory nerve repre-
sentations as input. To ask whether the information encoded via per-
ipheral spike timing is necessary to account for behavior,we separately
optimized models with altered nerve phase locking and compared the
models’ behavior to that of human listeners (Fig. 1b). The results pro-
vide new evidence for the importance of high-fidelity temporal coding
in perception, and provide a way to understand why it is used, by
showing where it is critical for real-world task performance.

Results
Auditory nerve model stage
We hard-coded the model input representation to approximate the
information the ear sends to the brain. We used a phenomenological
model46 of the auditory periphery to simulate instantaneous firing rate
responses of a population of auditory nerve fibers whose frequency
tuning and sensitivitywas intended tomatch thatof the human ear.We
simulated the 3 canonical auditory nerve fiber types found in mam-
mals, which have different spiking thresholds and spontaneous
activity47. High-spontaneous-rate fibers have low thresholds but nar-
row dynamic ranges, such that their firing rates saturate at conversa-
tional sound levels. Medium- and low-spontaneous-rate fibers have
higher thresholds and broader dynamic ranges but are less numerous
in the ear. The resulting frequency-by-time-by-fiber-type array of
instantaneous firing rates was then converted to an array of sampled
spike counts, representing the population response of 32000 indivi-
dual auditory nerve fibers per ear (60% high-spontaneous-rate, 25%
medium-spontaneous-rate, and 15% low-spontaneous-rate), which
served as the input representation to the networks. To our knowledge,
our models are the first to perform naturalistic tasks using a near-
realistic representation of the information from a sensory
receptor organ.

Temporal coding manipulation
The fidelity of temporal coding in the mammalian ear is limited by the
capacitance and ion channel properties of the hair cell membrane29 as
well as the hair-cell-to-nerve-fiber synapse48, both of which act as low-
pass filters. The upper limit of phase locking was altered in silico by
changing the cutoff frequency of the low-pass filter governing the
inner hair cell potential in the peripheral model. We optimized
machine models with different cutoffs to ask whether phase locking
was necessary to obtain human-like behavior.

In one training condition, this low-pass cutoff was set to a default
value of 3000Hz, which produces phase locking similar to that seen in
electrophysiological recordings from non-human animals (Fig. 1c).
This upper limit is presumed to be shared by humans49–52 but is not
directly measurable. To investigate the behavioral relevance of tem-
poral coding, we also trained models with each of three lower cutoff
values: 1000Hz, 320Hz, and 50Hz. Lowering this cutoff degrades the
fidelity of temporal coding, progressively blurring the auditory nerve
representation along the time-axis (Fig. 1d and e). The lowest cutoff
eliminates essentially all phase locking to temporal fine structure in
natural sounds (as well as to envelope modulations above the cutoff).
However, as expected, the manipulation had very little effect on the
pattern of firing rates across the cochlear frequency axis (Fig. 1f): nerve
fibers with low phase locking limits encode high frequency sounds in
their firing rates, just not with precise spike timing. We separately
optimized neural networks operating on auditory nerve representa-
tions with these four different cutoff frequencies. We note that the
cutoff determines the frequency at which phase locking precision rolls
off, not the upper limit of all detectable phase locking, which could be
slightly higher. For simplicity, we refer to different models by their
cutoff frequencies (e.g., the 3000Hz phase locking model).
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Artificial neural network model stages and training
The neural network portion of each model consisted of a feedforward
series of stages instantiating linear convolution, nonlinear rectifica-
tion, normalization, and pooling. The parameters of these model
stages were optimized to perform auditory tasks via supervised
machine learning. Each task was operationalized as a classification
problem with a single ground-truth label per stimulus.

The performance of a neural network depends on both the
weights (that are optimized via gradient descent for training task
performance) and the hyperparameters that define the network
architecture (e.g., the number of layers and the size and shape of

convolutional filter kernels). To ensure that these hyperparameters
were also optimized for the tasks, we used the top 10 best-performing
network architectures previously identified in large-scale random
architecture searches conducted for each task (Supplementary
Tables 1–2)18,19,53. Results for each task and cochlear model configura-
tion are presented as the average of these 10 network architectures,
allowing us to provide uncertainty estimates and marginalize across
the idiosyncrasies of any single network architecture.

Our approach relied on optimizing models for “natural” tasks, on
the grounds that these are likely to have shaped the nervous system’s
strategies. As such, we define natural tasks to be those that humans
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perform in their daily lives and that have likely been important for
survival: recognizing and localizing everyday sounds in everyday
conditions.We contrast such tasks with those often used in laboratory
experiments, where both the behavioral judgment and stimuli can be
artificial (e.g. discriminating synthetic tones or noise signals).
Accordingly, training stimuli were compiled from large-scale corpora
of natural sounds (speech and recordings of auditory scenes) andwere
meant to approximate the “auditory diet” that likely shaped biological
hearing systems over the course of evolution and development.

Models were optimized to perform three different auditory
tasks: sound localization, voice recognition, and word recognition.
For each task, we separately trained models with four different
auditory nerve phase locking limits and then compared their beha-
vior to that of humans. The models featured here build on previous
models of human sound localization19 and word recognition16,54 but
were improved in several respects to enable a strong test of the
importance of temporal coding. Specifically, they operated on more
realistic input representations (incorporating spikes and multiple
types of auditory nerve fibers), were trained on more realistic data-
sets, and were evaluated with an expanded set of psychoacoustic
experiments. We emphasize that the models were not fit to match
human data and were optimized only for task performance. Any
similarity to human behavior is thus a consequence of optimization
for the task given the constraints of the simulated auditory nerve
input and model architecture.

Logic of approach and aggregate results
We begin by outlining the logic of the approach along with a summary
of the results that illustrates how the overall results relate to this logic
and the conclusions that follow from it. We then present the results of
individual experiments in each of the three task domains, which
illustrate the specific effects that underlie the overall results.

Effect of temporal coding on naturalistic task performance
For each of the three tasks, we first evaluated models on naturalistic
stimuli in noise, asking whether phase locking is necessary for good
performance. Because lowering the phase locking limit removes
information from the model’s input, there are two main qualitative
possibilities. Performance could worsen for phase locking limits below
a critical value, which would provide evidence that fine-grained tem-
poral information from phase locking up to that value is beneficial for
the task, and thus might have driven its role in perception. Alter-
natively, performancecould remain similar acrossphase locking limits.
This result would indicate that fine-grained temporal information is
not needed for the task in question.

It was a priori likely that high-fidelity phase locking would matter
to some extent for sound localization, wheremicrosecond-level timing
differences between the two ears can plausibly only be conveyed via
spike timing, and where corresponding neural circuitry has been
documented. However, it was unclear whether the benefit of phase
locking would cap out below the presumptive upper limit of the

auditory nerve. It was also unclear what to expect for word and voice
recognition.

Figure 2 shows the effect of the phase locking cutoff on overall
performance for each of the three tasks in noise (solid lines; left y-
axes). As expected, sound localization (Fig. 2a) was worse for lower
cutoffs, withmean absolute localization error increasing by 6.4° as the
cutoff was lowered from 3000 to 50Hz (p<0:001, evaluated by
bootstrapping across 10 neural network architectures). However, the
effect was driven by cutoffs below 1000Hz. Voice recognition (Fig. 2b)
showed a comparably large effect of phase locking, with accuracy
droppingby 10.5%between the 3000and50Hzconditions (p<0:001).
By contrast, the effect on word recognition (Fig. 2c) was modest, with
accuracy dropping only 2.1% across conditions (p<0:001). These
results indicate that high-fidelity temporal coding aids localization and
voice recognition in natural conditions but in absolute terms is less
critical for word recognition.

Effect of temporal codingonhuman-model behavioral similarity
For each task we then simulated a battery of psychoacoustic experi-
mentsmeasuring the effect of different cues on perception (described
in detail in subsequent sections). We asked whether phase locking was
necessary for a model to exhibit human-like behavior as assessed via
the pattern of performance across the battery of experiments. The
most diagnostic result would be that one of the phase locking limits
produces more human-like behavior than the others. Such a result
would indicate that phase locking up to that limit contributes to that
behavior (and thus must be extracted by the auditory system). The
maximally human-similar model could in principle occur for a low
phase locking limit, if high-frequency phase locking is discarded by the
auditory system for that task.

Figure 2 also shows human-model behavioral similarity in each of
the three task domains for each phase locking cutoff (dotted lines;
right y-axes). The results implicate phase locking in all three types of
behavior, but to different extents. For sound localization the 1000Hz
cutoff produces most human-like behavior (as evaluated by the cor-
relation between human and model results; see Supplementary Fig. 1
for comparable results using root-mean-squared error as the measure
of similarity). This result implicates phase locking up to but not above
1000Hz in human sound localization. By contrast, for both voice and
word recognition, the three highest cutoffs produced comparably
human-like behavior and only the 50Hz cutoff produced an appreci-
ably worsematch to humans. This result provides evidence that phase
locking above 50Hz is used in human perception in these domains,
with no evidence that phase locking above 320Hz is used.

Insight into why phase locking is used when it is may be obtained
by comparing thedotted and solid lines in Fig. 2. For sound localization
(Fig. 2a), the finding that localization performance does not improve
above 1000Hz (Fig. 2a, solid line) provides a normative explanation
for why phase locking above 1000Hz does not appear to influence
human perception (Fig. 2a, dotted line). If phase-locked spike-timing
information above 1000Hz does not aid localization in naturalistic

Fig. 1 | Overview of approach. a Sound waveforms carry information in their
amplitude envelope as well as their individual pressure oscillations (the “temporal
fine structure” or “TFS”). The envelope and fine structure are encoded with phase-
locked spike timing in the auditory nerve. As temporal coding is degraded, auditory
nerve spikes no longer phase lock to the fine structure, encoding only the slower
envelope fluctuations. b Schematic of the approach. Human auditory behavior is
shaped by the ears and the acoustic environment. Models optimized to perform
naturalistic tasks might reproduce human-like behavior if optimized for the audi-
tory nerve information used by the human auditory system. c Top: The strength of
phase locking as a function of frequency, measured in the auditory nerve fibers of
guinea pigs. Data are re-plotted from Ref. 29. Bottom: The roll-off in phase locking
strength is determined by the low-pass filter characteristics of the inner hair cell.

Manipulating the hair cell low-pass filter cutoff in model auditory nerve fibers
changes the upper frequency limit of phase locking. The 3000Hz cutoff best
approximates the guinea pig data and is commonly used to model the human
auditory nerve. d Simulated auditory nerve representations of the same speech
waveform with four different configurations of the auditory nerve model. Config-
urations differed in the inner hair cell low-pass filter cutoff. e Instantaneous firing
rates from example auditory nerve fibers illustrate the degradation of precise spike
timing as the phase locking limit is lowered. Note the rapid oscillations infiring that
are present for higher phase locking limits, but absent when the limit is lowered.
f Time-averaged firing rates across the 25ms window depicted in (e) illustrate that
lowering the phase locking limit does not disrupt “place” cues in the overall pattern
of excitation across the cochlear frequency axis.
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conditions, then there would be little evolutionary pressure to extract
it. Other species with smaller heads might require higher-fidelity
temporal coding of time differences for good localization perfor-
mance; see Discussion.

A similar correspondence is evident for voice recognition:
recognition performance improves as the cutoff is raised from 50 –

320Hz (Fig. 2b, solid line: improvement of 8.13%), but not much
beyond that (e.g., from 320Hz – 1000Hz: improvement of 2.02%),
roughly mirroring the effect of the phase locking cutoff on human-
model similarity (Fig. 2b, dotted line). These results are consistent with
the idea that phase locking is being used by the brain to the extent that
it is advantageous within a domain for task performance.

The results for word recognition (Fig. 2c) are qualitatively similar:
an improvement in performance was again evident from 50 – 320Hz
(improvement of 2.58%), but not beyond (no significant change from
320Hz to 3000Hz), and this mirrored the effect on human-model
similarity. However, it is less clear that the modest improvement in
performance would be enough to drive the incorporation of phase
locking into the perceptual strategy (see below).

In the following sections, we consider each task in turn, showing
the effect of phase locking on performance at different noise levels,
and on a large set of psychophysical assays.

Model optimization – sound localization
To assess sound localization behavior, models were tasked with
reporting the location of target sound sources in naturalistic auditory
scenes rendered as binaural audio using a virtual acoustic room and
head simulator (Fig. 3a). Each training scene consisted of a target
source rendered at a single location in a room in the presence of
spatially diffuse texture-like background noise. Background noises
were selected to be more temporally homogeneous than the targets
(e.g., the sound of running water rather than a single splash; see
Methods) to ensure the task was well-defined. Themodel classified the
azimuth and elevation of the target source relative to the simulated
listener’s head. Themodel operated on auditory nerve responses from
the simulated listener’s left and right ears, and thus had access to the
same monaural and binaural cues as a human listener in the same

scene (Fig. 3b). Models optimized for this task with access to high-
fidelity temporal coding in the peripheral representation have pre-
viously been shown to replicate characteristics of human sound
localization19, including the frequency-dependent use of interaural
time and level differences for azimuth judgments55 and the use of ear-
specific spectral cues for elevation judgments56,57. However, it was
unclear what would happen if models were optimized without high-
fidelity temporal coding. Specifically, it was unclear how impaired
temporal coding would affect the use of different localization cues,
and whether the upper limit of time difference encoding evident in
humans42–44 could be explained by what is needed for natural task
performance.

Degraded temporal coding impairs sound localization
We compared human and model sound localization accuracy for a set
of 460 natural sounds presented in different levels of background
noise (Fig. 3c). Humans were asked to report which of 95 loudspeakers
(spanning −90° to 90° azimuth and 0° to 40° elevation) produced the
target sound. This taskwas intended to tap into someof the challenges
(background noise, many possible locations) that accompany locali-
zation in real-world settings. On each trial threshold-equalizing noise58

was played diffusely from 9 other randomly selected loudspeaker
locations.Models performed the same task in a virtual rendering of the
loudspeaker array room.Overall task performancewas quantifiedwith
meanabsolute localization error as a function of SNR. Althoughhuman
listeners outperformed all models at the lowest SNRs (plausibly
because themodelsoccasionally report the locationof the noise rather
than the target), models with access to high-frequency phase locking
produced the best match to human behavior (Fig. 3d). Models with
3000 and 1000Hz phase locking limits exhibited near-human-level
robustness to noise, while models with degraded temporal coding
made progressively larger localization errors as the phase locking limit
was lowered. Degraded temporal coding impaired localization per-
formance in both azimuth and elevation, though the effect was larger
for azimuth (Fig. 3d, middle vs. right). These results confirm that
precise spike timing is important for localizing natural sounds, parti-
cularly in noisy environments.

Fig. 2 | Models with access to phase-locked spike timing have better and more
human-like hearing. Each panel corresponds to a different task and summarizes
the effect of auditory nerve phase locking limit on naturalistic model task perfor-
mance and overall human-model behavioral similarity. Naturalistic task perfor-
mance is quantified as a single number averaged across noise conditions shown in
later figures (left y-axes; solid lines). Overall human-model behavioral similarity is
quantified as the Pearson correlation between analogous human and model data
points, averaged across all experiments for each model task (right y-axes; dotted

lines). Individual experiments are described in subsequent results sections and
figures. Error bars indicate 95% confidence intervals of the mean (bootstrapped
across 10 network architectures for each model). a Sound localization. The left y-
axis plots mean absolute error for the sound localization model and is inverted so
that better model performance corresponds to higher positions on the y-axis.
b Voice recognition. Here and in (c) the left y-axes plot percent correct for the
model when tested on speech in noise. c Word recognition. Source data are pro-
vided as a Source Data file.
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Auditory nerve phase locking is critical for ITD-based sound
localization
Biological sound localization relies on threemain cues. Small time and
level differences between sounds at the two ears provide cues to a
source’s location in the azimuthal plane (Fig. 3b, left). In addition,
before impinging on the ear drum, a sound waveform is altered by the

pinna, head, and torso, which boost some frequencies and attenuate
others. This anatomical filtering is direction-specific, providing a third
cue to a source’s location (Fig. 3b, right). Humans rely on these
“spectral” cues to judge elevation59,60. To investigate the contribution
of temporal coding to each of these localization cues, we simulated a
set of classic psychoacoustic experiments on the models.
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Humans rely more on interaural time differences (ITDs) at low
frequencies and interaural level differences (ILDs) at high
frequencies61. One demonstration of this comes from measurements
of human sensitivity to interaural cue manipulations with virtual
sounds55 (Fig. 3e). In the original experiment, sounds were rendered at
different azimuths using a virtual acoustic simulator. Interaural cue
sensitivity was inferred from how much a sound’s perceived location
appeared to shift as additional ITDs or ILDs were added to the binaural
waveforms. Shifts in perceived azimuth were mapped back to units of
ITD or ILD (specified as the ITD or ILD change corresponding to an
actual shift in azimuth by the same amount), allowing interaural cue
sensitivity to be quantified as a dimensionless weight: the slope of the
response cue value relative to the imposed cue value. For low-
frequency sounds, the ITD weight in humans is much larger than the
ILD weight. The reverse is true for high-frequency sounds.

Although the encoding of ITDs is thought to make use of phase
locking, it was a priori not entirely clear what to expect from the
models with altered phase locking limits. The ITDs of natural sounds
are present in amplitude envelopes in addition to the fine structure
within frequency channels62–64. Because envelopemodulation rates are
usually low, interaural envelope delays should in principle be detect-
able even if the effective sampling rate of cochlear transduction is
lowered via the phase locking limit, and could potentially produce ITD
sensitivity without high-fidelity phase locking.

To investigate the contribution of phase locking to this frequency-
specific cue dependence, we simulated this experiment on ourmodels
(Fig. 3f). Models with high phase-locking limits replicated human
behavior, exhibiting high ITD sensitivity only for low frequencies and
high ILD sensitivity only for high frequencies. Models with degraded
temporal coding (320 and 50Hz phase locking limits) deviated from
human behavior, progressively losing ITD sensitivity at all frequencies
and gaining superhuman ILD sensitivity at low frequencies. These
results suggest that phase-locked spike timing up to 1000Hz is
necessary for human-like dependence on binaural cues, implicating
temporal coding in this aspect of perception.

Azimuth dependence of human localization requires phase
locking
The non-human-like cue dependence under degraded phase locking
was also evident in the dependence of localization acuity on azimuth.
Human sound localization is best near the midline and becomes less
accurate toward the periphery65–67, as can be quantified by minimum
audible angle thresholds68 (the smallest detectable angular distance
between two sources) (Fig. 3g). We simulated an experiment measur-
ing minimum audible angle thresholds for pure tones. Thresholds
measured from the 3000 and 1000Hz phase locking models resem-
bled those of human listeners (Fig. 3h). By contrast, the 320 and 50Hz
phase locking models exhibited a qualitatively different dependence
on azimuth, with much higher thresholds away from the midline.
These results suggest that ITD cues conveyed by precise spike timing

are particularly important for accurate localization away from the
midline. This idea is consistent with findings that ILDs are less reliable
at lateral azimuths by virtue of varying nonmonotonically with
azimuth69, which might make ITDs critical for lateral localization.

Physiological model architecture constraints improve predic-
tions of ITD sensitivity
Human listeners are remarkably sensitive to ITDs at low frequencies,
but this sensitivity deteriorates at higher frequencies43. In principle this
sensitivity could be limited by the upper limit of phase locking in the
auditory nerve. However, human sensitivity instead declines rapidly
above 1 kHz and is fully lost by 1.5 Hz44—well below the presumptive 3-
5 kHz phase locking limit of the auditory nerve. To better understand
this discrepancy, we studied the frequency limits of ITD sensitivity in
our models.

ITD sensitivity as a function of frequency has been characterized
with ΔITD thresholds with pure tones (single frequencies; Fig. 4a). In
such experiments, listeners judge which of two lateralized tones (each
with a different ITD) appears further to the right. TheΔITD threshold is
the smallest change in ITD needed to reliably discriminate tones in this
way. We simulated one such previously published experiment44,
measuring model ΔITD thresholds as a function of frequency. Model
ΔITD thresholds were unmeasurably high for frequencies above a
model’s phase locking limit, as expected (Fig. 4b). Thresholds mea-
sured from the 1000Hz phase locking network produced the closest
match to human behavior. The 3000Hz phase locking model in fact
exhibited superhuman ITD sensitivity, with thresholds on the order of
20 µs even up to 2.5 kHz.

This discrepancy with humans is consistent with the known
anatomy of the binaural system. Because ITD estimation requires a
comparison of input from the two ears, perceptual sensitivity to high-
frequency ITDs requires temporal coding at that frequency to be
maintained in the auditory system until the stage at which this com-
parison is made70,71. The lower limit of ITD sensitivity in humans is
plausibly due to anatomical constraints that force information from
each ear to pass through additional synapses before being compared,
with some loss of temporal precision at these synapses45. But this
explanation in turn raises the question of why the auditory system
would not have evolved a way tomake the comparison happen earlier.

Because the models developed here can be tested in naturalistic
conditions, they provide an answer to this question. When tested on
naturalistic auditory scenes (natural sounds in noise), the 1000Hz
phase locking model localized just as well as the 3000Hz model
(Figs. 2a and 3d). And across all other psychoacoustic experiments we
simulated, there was no significant difference in human-model simi-
larity between the 1000 and 3000Hz phase locking models (Fig. 2b
and Supplementary Fig. 2). These results suggest that temporal coding
above about 1000Hz provides little adaptive benefit.

To test the idea that “early” interaural comparisons accounted for
ourmodel’s superhuman ITD sensitivity, we altered the neural network

Fig. 3 | Sound localization is impaired inmodels with degraded auditory nerve
spike timing. a Localization model schematic. Deep artificial neural networks
optimized for sound localization operated on binaural auditory nerve representa-
tions of virtually rendered auditory scenes. Nerve representations from the left and
right ear were supplied as distinct channels to the first neural network stage.
b Sound localization cues available to human listeners. Left: interaural time and
level differences (ITDs and ILDs) are shown for pure tones recorded at the left and
right ear. Right: spectral differences in the anatomical transfer function provide a
monaural cue to elevation. c Schematic of the sound localization in noise experi-
ment. d Mean absolute error for humans (n = 11) and models localizing natural
sounds in noise are plotted as a function of SNR. The three axes separately plot
spherical, azimuth, and elevation errors. Y-axes are inverted so that better perfor-
mance is higher. e Schematic of the ITD / ILD cue weighting experiment. The
perceptual weights measure the extent to which added ITDs or ILDs shift the

perceived azimuth of a virtual sound presented over headphones. f ITD and ILD
perceptual weights measured with low-pass and high-pass noise from humans
(n = 13) and models. Note that the noise is the signal to be localized, rather than
serving as a masker. g Schematic of minimum audible angle experiment.
h Minimum audible angles plotted as a function of azimuth for human and model
listeners.Model error bars always indicate ±2 standard errors of themean across 10
network architectures per phase locking condition. In (d, f) human error bars
indicate ±2 standard errors of themean across participants. In (h) human error bars
indicate ±2 standard errors from 1 listener averaged across 4 different pure tone
frequencies (250, 500, 750, and 1000Hz). Human data in (f, h) are re-plotted from
the original studies55,68. Listener schematics in (b–g) adapted from Francl &
McDermott, Nature Human Behaviour, Volume 6, January 2022, reproduced with
permission from SNCSC. Source data are provided as a Source Data file.
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architectures slightly to delay interaural integration (Fig. 4c). We
replaced the standard convolution operations in the earliest neural
network stages with “grouped” convolution operations (with one
group for each ear; see Methods), such that the resulting modelsmust
initially process information from the left and right auditory nerve
separately. Reasoning that synapses introduce temporal jitter that

effectively imposes low-pass filtering72, interaural integration was only
allowed to occur in themodels after early temporal pooling layers that
downsample in time, reducing temporal fidelity. We note that this is a
relatively weak biological constraint in the context of the detailed
models of binaural processing stages70,71,73–75 that are used elsewhere in
our field. We note also that there is evidence for enhancement of the

Fig. 4 | Upper frequency limit of interaural time difference sensitivity.
a Schematic of experiment used to measure ITD sensitivity as a function of fre-
quency. On each trial, listeners heard a pair of pure tones with two different ITDs
and judged whether the second tone was located to the right or left of the first.
b ITD lateralization thresholds measured as a function of frequency from humans
(n = 4) and models. c Schematic of neural network architecture modification to
delay binaural integration. Replacing the first two convolutional layers with
grouped convolutions (1 group for each ear) forces models to process the ears
separately (and to downsample in time due to the inclusion of pooling operations,
which reduce the fidelity of temporal coding, analogous to the loss of fidelity that
occurs at each synapse in the auditory system) before binaural integrationoccurs in
the first standard convolutional layer. Blue and red represent information from the
left and right ears, respectively. d ITD lateralization thresholds measured as a
function of frequency from humans and models with and without the modified
network architectures (both models had the same 3000Hz phase locking limit in

their auditory nerve representation). Error bars in (b–d) indicate ±2 standard errors
of themean across 4 human participants or 10 network architectures. Human data
are re-plotted from the original study44. e Effect of phase locking limit on sound
localization in noise (left y-axis, solid lines) and human-model behavioral similarity
(right y-axis, dotted lines). The data is re-plotted from Fig. 2a but now includes the
delayed interaural integration model. The statistical significance of differences
between models with and without delayed interaural integration was assessed by
two-tailed paired comparisons (p-values indicate the probability of obtaining a
more extreme score than the delayedmodel under a null distribution bootstrapped
from the non-delayed model). Error bars indicate 95% confidence intervals of the
mean bootstrapped across network architectures. Listener schematic in (a) adap-
ted from Francl & McDermott, Nature Human Behaviour, Volume 6, January 2022,
reproduced with permission from SNCSC. Source data are provided as a Source
Data file.
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precision of low-frequency phase locking in the brainstem45, in addi-
tion to the loss of higher frequency phase locking that we modeled
here. It nonetheless seemed useful to assess whether a minimalistic
biologically inspired constraint would be sufficient to replicate human
behavior.

We trained these modified neural network architectures with
3000Hz phase locking auditory nerve input and evaluated them on
the full set of sound localization experiments. Consistent with our
hypothesis, the models lost sensitivity to high-frequency ITDs (like
humans; Fig. 4d) but were otherwise unaffected (Supplementary
Fig. 2). Delaying interaural integration thus increased the overall
human-model similarity score (which aggregates results across all
experiments) for the 3000Hz model (p<0:001,d = 12:0, evaluated
by bootstrapping across 10 neural network architectures; Fig. 4e,
dotted line). These results indicate that additional physiological
constraints can in some cases produce better matches to human
behavior. Moreover, delaying interaural integration did not impair
localization performance in noise (p=0:405,d =0:783, comparing
localization error between the delayed and non-delayed 3000Hz
models; Fig. 4e, solid line). This latter result provides a normative
explanation for the solution that biological auditory systems have
arrived at over evolution, as it suggests there is little cost to real-
world behavior when integration is delayed. We note that the results
are equally consistent with the possibility that the cutoff of phase
locking in humans is substantially lower than 3000Hz (i.e., lower
than in other mammals, as some have argued32), and would also
provide a normative justification for such a lower cutoff from the
standpoint of sound localization.

Not all localization phenomena are inextricably linked to phase-
locked spike timing
Although removing phase locking caused pronounced discrepancies
with human behavior (Supplementary Fig. 2a–f), some behaviors were
relatively unaffected. All models exhibited the “precedence effect”, in
which localization judgments are dominated by the initial part of a
sound76 (Supplementary Fig. 2g; evidently the models without phase
locking learned to prioritize ILD cues from the onset of a sound in
order to localize accurately amid reflections). Allmodels also exhibited
human-like dependencies of localization accuracy on bandwidth77

(Supplementary Fig. 2h) and of elevation accuracy on high-frequency
spectral cues56,57,78 (Supplementary Fig. 2i). However, we did find that
models without access to phase locking became abnormally depen-
dent on spectral cues for azimuthal localization (Supplementary
Fig. 3), evidently tomake up for the impaired binaural information that
results from impaired phase locking. This latter result provides further
evidence for the importance of phase locking to human spatial
hearing.

Model optimization – word and voice recognition
To model speech perception, we optimized models to recognize
words and voices using the Word-Speaker-Noise dataset79 (Fig. 5a),
consisting of 2 s speech excerpts superimposed on real-world back-
ground noise. Training on this dataset has previously been shown to
produce models that yield the best current predictions of auditory
cortical responses80. Models were jointly optimized to classify stimuli
according to the word that appeared in the middle of the excerpt
(794-way word recognition task) and the talker that produced the
utterance (433-way voice recognition task). These tasks were inten-
ded to capture some of the challenges of everyday speech and voice
recognition (background noise, large numbers of classes, high
degree of variability), subject to practical constraints of dataset
generation and model optimization (see Methods). We also trained
models on each task individually and found similar results (Supple-
mentary Figs. 4 and 5). We present results from the joint-task
model here.

Phase locking improves voice recognition more than word
recognition in real-world noise
Wefirstmeasuredhumanandmodelword recognition performanceas
a function of SNR in different types of background noise: recorded
auditory scenes, speech babble, instrumental music, and stationary
speech-shaped noise (Fig. 5b). Lowering the phase locking limit pro-
ducedmodestdeficits formodelword recognition accuracy in someof
the conditions, with no detectable effect in others. To the extent that
there was a benefit from phase locking, it occurred between the 50Hz
and 320Hz conditions.

We next measured voice recognition performance in the same
models on the same stimuli (Fig. 5c); it was not possible to run human
participants in this experiment (see below). At low SNRs, models with
access tophase lockingperformedbetter thanmodelswithout. Aswith
word recognition, almost all the benefit from phase locking occurred
below 320Hz, suggesting phase locking up to but not above the F0 of
most human speech improves voice recognition in noise.

To further search for naturalistic noise conditions inwhich phase-
locked spike timing might contribute to word recognition, we mea-
sured human andmodel word recognition in each of 43 different real-
world auditory textures81 (Fig. 5d; Supplementary Fig. 6). At afixedSNR
of −3 dB, these different textures produced a wide range of human
word recognition scores (25% to 80% correct; this variation was highly
reliable, with Spearman-Brown corrected split-half reliability = 0.968).
Models tested on the same stimuli produced similar word recognition
scores as humans, accounting for about 95% of the explainable var-
iance in the human data. This similarity again held regardless of the
phase locking limit (Fig. 5e). However, a scatter plot comparing word
recognition scores between the 50 and 3000Hz phase lockingmodels
(Fig. 5f, left) shows a small benefit of phase locking for word recogni-
tion (mean benefit = +2.3%; standard deviation = 2.3%), and inspection
of results for individual textures reveals that larger benefits (5–8%)
occurred for a few types of noise (Supplementary Fig. 6a). This result
extends previous findings that neural networks trained to recognize
speech can replicate patterns of human speech intelligibility16,82–84, and
further underscores a small benefit of high-fidelity phase locking for
word recognition in noise (for monaural conditions in which localiza-
tion cues cannot aid performance).

An analogous scatter plot of model voice recognition scores
measured with the same stimuli (Fig. 5f, right) shows a considerably
larger benefit of phase locking than for word recognition (mean ben-
efit = +14.9%; standard deviation = 5.7%), with effects as large as
22–29% for particular types of noise. Comparing absolute voice
recognition performance to that of humans is practically challenging
because listeners do not all recognize the same voices and overall
accuracy depends strongly on listener familiarity with voices. Instead,
we asked whether the qualitative characteristics of human voice
recognitionwere shared by themodels, andwhether this depended on
the phase locking limit.

The dependence of human voice recognition on absolute pitch
requires phase locking
Humans rely in part on absolute pitch to recognize voices. When a
familiar talker’s voice is F0-shifted ormade inharmonic (by frequency-
jittering its harmonic components to be inconsistent with any single
F0) (Fig. 6a), the voice is less recognizable85. To assess whether these
characteristics were shared by the models and if they depended on
phase locking, we measured human and model voice recognition with
F0-shifted (Fig. 6b, closed symbols) and inharmonic speech (Fig. 6c,
closed symbols). Models were tested on familiar voices (but held-out
speech utterances) from the training set. Humans were tested on
celebrity voices, as in prior work85.

There is no way to match the relative familiarity of test voices
between human andmodel participants, confounding comparisons of
absolute performance. However, models with access to phase-locked
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spike timing best replicated the qualitative properties of human
behavior. Human voice recognition was best for voices at their natural
F0 and fell off with progressively larger shifts in either direction, as in
prior work85. Human performance was also impaired bymaking voices
inharmonic. Models with the 50Hz phase locking limit exhibited
superhuman robustness to these F0 manipulations, suggesting the

reliance on absolute pitch evident in humans only emergeswith the aid
of phase locking. The presumptive explanation is that pitch cues from
phase locking aid performance in noise, such that models with phase
locking learn a recognition strategy that uses these cues. This strategy
leaves them dependent on these cues and thus produces worse per-
formance when F0 is altered. By contrast, the model without phase
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locking does not use this cue and so is more robust to its alteration.
These results provide additional evidence for a role of phase locking
(up to about 320Hz) inhumanvoice recognition andpitchperception.

We also measured human and model word recognition with F0-
shifted and inharmonic speech (Fig. 6b, c, open symbols). In contrast
to the results for voice recognition, human word recognition was
unaffected by these F0 manipulations. Model performance was simi-
larly robust regardless of phase locking limit, remaining comparable to
that for humans in all conditions.

Phenomena previously linked to phase locking – effect of tone
vocoding
In addition to general proposals that phase locking aids speech per-
ception in noise, phase locking has been linked to two specific effects

on human speech recognition. The first is the effect of tone vocoding—
a signal manipulation intended to remove information conveyed by
phase locking, which in some conditions produces deficits in speech
intelligibility38. The second is the benefit of spatial separation between
sound signals, which exhibits individual differences across human lis-
teners, especially in reverberant listening conditions39,86. These indi-
vidual differences have been proposed to bemediated by the integrity
of temporal coding, as is presumably dependent on the extent of nerve
fiber survival. We asked whether the models would exhibit these
effects, and whether this depended on access to high-fidelity phase
locking.

The tone vocoding manipulation first decomposes a speech
waveform into frequency bands, using a simulated cochlear filter
bank38 (Fig. 7a). The temporal envelopes of each band are extracted

Fig. 5 | Auditory nerve spike timing improves voice recognition more than
word recognition in real-world noise. a Speech model architecture and task.
Deep artificial neural networks were jointly optimized to recognize words and
voices from simulated auditory nerve representations of speech in noise. The two
tasks shared all model stages up to the final task-specific output layers. b Human
(n = 44) and model word recognition as a function of SNR. Each panel plots task
performance in a different naturalistic noise condition16. cModel voice recognition
as a function of SNR. It was not possible to run humans in this experiment as human
participants would not be familiar with the specific voices themodel was trained to
recognize. d Spectrograms of the same speech excerpt embedded in different

auditory textures. e Human (n = 47) vs. model word recognition scatter plots for
speech embedded in each of 43 distinct auditory textures at −3 dB SNR. Each data
point represents the human andmodelword recognition score for a single auditory
texture. f Effectof phase lockingonmodelword and voice recognition in43distinct
auditory textures. The left scatter plot comparesword recognitionperformance for
the 50 and 3000Hz IHC filter models. The right scatter plot compares voice
recognition performance for the 50 and 3000Hz IHC filter models. All error bars
indicate ±2 standard errors of the mean across human participants or 10 network
architectures. Source data are provided as a Source Data file.

Fig. 6 | Auditory nerve spike timing is critical for human-like voice recognition.
a Stimuli for F0-altered word and voice recognition experiments. Spectrograms
show the same speech excerpt resynthesized in four different pitch conditions:
unmodified (natural), F0-shifted down 12 semitones, F0-shifted up 12 semitones,
and inharmonic. In the inharmonic condition, harmonic frequency components
were randomly frequency-shifted such that they were no longer integer multiples

of a common F0andwere no longer linearly spaced in frequency.bWord and voice
recognition accuracy for humans and models tested on F0-shifted speech. cWord
and voice recognition accuracy for humans and models tested on harmonic and
inharmonic speech. All error bars indicate ±2 standard errors of the mean across
humanparticipants (n = 22 for word recognition; n = 95 for voice recognition) or 10
network architectures. Source data are provided as a Source Data file.
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Fig. 7 | Auditory nerve phase locking is needed to account for phenomena
previously linked to temporal fine structure. a Schematic of tone-vocoding sti-
mulus manipulation with a “cutoff channel” of 10. A speech waveform was sepa-
rated into 32 frequency bands by a band-pass filter bank that mimics the cochlea’s
frequency tuning. Frequency channels up to and including the cutoff channel were
left intact. In frequency channels above the cutoff, temporal fine structure (TFS)
was disrupted by replacing the bandwith a pure tone carrier at the channel’s center
frequency, amplitude modulated by the envelope of the original band. b The
benefit from temporal fine structure was quantified by plotting word recognition
accuracy vs. SNR andmeasuring leftward shifts in these psychometric functions as
the cutoff channel (i.e., the number of channels with intact temporal fine structure)
was increased. All shifts were computed relative to performance with fully tone-
vocoded speech (0 channels intact, orange circles). c Tone vocoding results. The
benefit from temporal fine structure—measured from humans and models—is
plotted as a function of the number of channels with intact temporal fine structure.
Opencircles plot the benefit in stationary noise and closed circlesplot the benefit in

amplitude-modulated noise. Human data in (c) is re-plotted from the original
study38 and errors bars indicate ±1 standard error of the mean across 10 partici-
pants. d Schematic of the speech localization experiment in anechoic and rever-
berant conditions. e Model sound localization accuracy as a function of SNR and
reverberation. Panels plot performance in a simulated anechoic (solid symbols) and
reverberant (open symbols) room for each phase locking model. Although the
qualitative effects shown here have been documented in humans, the experiment
we used to measure the effects in our model had not been conducted in human
listeners, and so we do not have an explicit comparison to human data. f The effect
of phase locking and reverberation condition on speech localization thresholds
measured from the psychometric functions in (e).Model error bars in (c–f) indicate
±2 standard errors of the mean across 10 network architectures. Listener sche-
matics in (d) adapted fromFrancl &McDermott, NatureHumanBehaviour, Volume
6, January 2022, reproduced with permission from SNCSC. Source data are pro-
vided as a Source Data file.
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and imposed on pure tone carriers at the center frequency of each
channel that are then summed. This procedure produces a new
waveform with similar envelope cues to the original but less informa-
tive fine structure (because the tone carriers are constant over time
and fixed across stimuli). Hopkins and Moore investigated the con-
tribution of fine structure to speech intelligibility in noise by tone
vocoding all frequency channels above a given cutoff. The authors
increased this cutoff from 0 (all channels vocoded) to 32 (no channels
vocoded), progressively increasing the upper frequency limit of fine
structure information preserved in the stimulus. Speech reception
thresholds were measured as a function of this cutoff in two types of
noise (stationary and modulated; Fig. 7b). In stationary noise, thresh-
olds improved somewhat as the cutoff increased. However, this
improvement was more pronounced in modulated noise, with sig-
nificant improvements up to 24 channels (corresponding to 4102Hz;
Fig. 7c, leftmost panel). This result was taken to suggest that humans
benefit from the information in the monaural fine structure of sound
waveforms, potentially upwards of 1000Hz.

We tested ourmodels on the same stimulusmanipulation (Fig. 7c,
right panels).Models with 3000 and 1000Hz phase locking limits best
replicated the human pattern of behavior, with speech reception
thresholds improving as more high-frequency fine structure was pre-
served, particularly inmodulatednoise. Thebenefit fromfine structure
information was reduced in the 320Hz phase locking model and fully
eliminated by 50Hz. This effect drove the lower overall human-model
similarity for word recognition in the 50Hz model (Fig. 2b). We note
that even the 3000Hz phase locking model showed a smaller benefit
than humans for 8 vs. 0 channels, possibly because the filter bank used
to vocode stimuli in the model experiment differed slightly from that
used in the human experiment (see Methods).

These model results are consistent with the qualitative inter-
pretation of the original human results38 as implicating phase locking
in this particular effect on speech intelligibility. However, they suggest
that the frequency dependence of the tone vocoding manipulation is
not directly related to the frequencies of phase locking used by the
brain, contrary to the intention of the original manipulation. Specifi-
cally, word recognition in the models benefitted from added high
frequency information beyond their respective phase locking limits.
For instance, the 1000Hz model received a benefit from frequencies
well above 1000Hz. Since the simulated auditory nerve representa-
tions cannot encode temporal fine structure so far above the phase
locking limit, the performance improvement from high frequencies
cannot be driven by high frequency phase-locked spike timing.

One alternative explanation is that tone vocoding interferes with
harmonic frequency relationships, such that when high-numbered
harmonics are vocoded, they no longer produce temporal envelope
variations at the F0 (which the auditory nerve encodes via phase
locking to the F0). Because pitch is an important cue for sound seg-
regation, disrupting the encoding of F0 could produce speech
recognition deficits. Consistent with this alternative explanation,
model word recognition exhibited very similar deficits in noise for
inharmonic speech87 as for tone-vocoded speech (Supplementary
Fig. 7), with similar interactions with phase locking.

These results suggest phase-locked spike timing is needed to
comprehensively account for human word recognition behavior. We
note that the phase-locking-dependent effects of tone vocoding were
present even inmodels that were only optimized for word recognition
(Supplementary Fig. 4g). This suggests that the modest benefit of
phase locking on word recognition task performance (Figs. 2a, 5, and
Supplementary Fig. 6) is enough to produce a strategy that incorpo-
rates phase locking to some extent. However, the magnitude of the
tone vocoding effect was somewhat larger in models that were jointly
optimized for word and voice recognition (5.8 dB compared to 4.1 dB
for models optimized only for word recognition; Supplementary
Fig. 8). This raises the possibility that the dependence of human-like

word recognition on phase locking is partly a consequence of sharing
machinery with tasks that benefit more from phase locking (voice
recognition being one candidate).

Phenomena previously linked to phase locking – localization
of speech
Better encoding of temporal fine structure has also been proposed to
be correlated with the ability to direct spatial attention to voices in
challenging acoustic environments39,86. Although our models did not
possess selective attention,we could testwhether phase lockingwould
enable better localization of speech in noisy and reverberant envir-
onments, as would be necessary to direct spatial attention. We simu-
lated a localization-in-noise experiment in which listeners reported
which of 9 loudspeakers (2m away, spanning −80° to +80° azimuth in
20° steps) produced a speech utterance, with threshold-equalizing
noise58 played from the remaining 8 loudspeakers (Fig. 7d). We mea-
suredmodel performance as a function of signal-to-noise ratio in both
a simulated anechoic chamber and in a moderately reverberant room
(RT60 = 1 s). Allmodels performedworse in reverberation (Fig. 7e), but
the degraded 320 and 50Hz phase locking models were particularly
impaired, producing a significant interaction between phase locking
and room condition (Fð3, 36Þ= 75:27,p<0:001, η2

partial =0:86)
(Fig. 7f). These results suggest that fine-grained temporal coding
should help listeners attend to individual voices in challenging
acoustic environments (e.g., a cocktail party), consistent with previous
proposals39,86. The other major cue for selective attention in cocktail
party scenarios is the sound of a target talker’s voice, in particular the
voice F088,89. Given that phase locking is needed for voice recognition
and for the representation of the voice F0 (Fig. 6), our results collec-
tively suggest that the cues for auditory attention are likely to be
compromised without intact phase locking.

Replication with simplified cochlear model
State-of-the-art cochlear models that best capture the nonlinear
response properties of the auditory nerve are computationally
expensive, which can limit their integration into larger-scalemodels of
the auditory system. To investigate whether the fine-grained details of
these models are critical to account for behavior, we also optimized
models with a simplified cochlear front-end. This front-end consisted
of a linear cochlear filter bank followed by half-wave rectification and
low-pass filtering (to impose an upper limit on phase locking), the
output of whichwas passed through sigmoid functions approximating
the rate-level functions of high-, medium-, and low-spontaneous-rate
fibers46. We repeated the temporal codingmanipulation by setting the
low-pass filter cutoff to 3000, 1000, 320, and 50Hz. In addition to
testing the importance of a detailed cochlear model, the simplified
model also served to rule out the possibility that effects observed with
the detailed cochlear model were driven by unintended nonlinear
consequences of adjusting filter parameters rather than degraded
temporal coding per se.

Models with the greatly simplified cochlear stage qualitatively and
in most cases quantitatively replicated the results obtained with the
highlydetailedmodel of the auditorynerve (Supplementary Figs. 9, 10,
and 11). This result suggests that the effects we saw with the detailed
cochlear model are not due to unintended interactions between its
components. The results also indicate that future work could use the
simplified model in many settings without a cost.

Comparison of machine learning models with ideal observers
The approach taken in this paper is predicated on the idea that an
optimizedmachine learningmodel can approach the characteristics of
an ideal observer. To test the plausibility of this assumption,we trained
neural networkmodels on a task for which provably optimal observers
can be derived: frequency discrimination. We trained 120 different
convolutional neural network architectures on the task and selected
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the 10 top-performing architectures. Simulated auditory nerve repre-
sentations of the two stimuli (200ms pure tones of different fre-
quencies) were supplied to the models as different input channels
(Fig. 8a), with models separately optimized for the four phase locking
cutoffs used elsewhere in this paper. We measured discrimination
thresholds from psychometric functions generated from the model
judgments (Fig. 8b), using the same stimulus conditions with which
previously published ideal observers for this task were evaluated. As
shown in Fig. 8c, the optimized neural network model with the lowest
phase locking cutoff (50Hz) closely approximated the “rate-place”
ideal observer that operates exclusively on firing rates. By contrast, the
model with the highest phase locking cutoff (3000Hz) closely
approximates the ideal observer that uses spike timing in addition to
firing rates. The two intermediate phase locking cutoffs produce
results intermediate between the two ideal observers. This result
shows that machine learning models of the sort used in this paper can
achieve results that are close to optimal for simple tasks, bolstering the
idea that the results shown here for more complex tasks may also be
indicative of characteristics of ideal observers.

Discussion
We developed models of real-world sound localization, voice recog-
nition, and word recognition by optimizing artificial neural networks
to classify simulated auditory nerve representations of natural sounds.

The resulting models closely replicated human behavior for natural
sounds as well as for synthetic experimental stimulus manipulations,
despite being optimized solely for task performance with natural
sounds. To investigate the perceptual role of temporal coding in
human hearing, we separately optimized models with lower auditory
nerve phase locking limits, measuring the effect on task performance
in naturalistic conditions as well as on human-model similarity across
different stimulus conditions. The phase locking manipulation
impaired performance for all three tasks, though the effect was larger
for sound localization and voice recognition than for word recogni-
tion. Moreover, patterns of behavioral performance deviated from
those in humans in at least some experimental conditions for each of
the three task domains when the phase locking limit was too low (or
too high, in one case). This combination of results provides evidence
that phase locking is used inhumanperception, and suggests thatboth
binaural and monaural mechanisms for extracting information from
spike timing must exist in the auditory system, and that models of
human hearingmust operate on high temporal resolution input if they
are to accurately capture behavior. But the results also provide a
normative perspective on why temporal coding is used, because the
dependence of human-model similarity on the phase locking limit
resembled that of task performance. In particular, the extent of tem-
poral coding needed to explain human voice andword recognitionwas
lower than that needed to explain human sound localization, and this

Fig. 8 | Deep neural networks optimized for pure tone frequency discrimina-
tion closely approximate previous ideal observer models. a Schematic of deep
neural network frequency discrimination model. The two tones were passed
through an auditory nerve model and then provided as input to a convolutional
neural network as separate channels (shown in brown and green). The levels of the
tones were varied independently. b Model frequency discrimination thresholds
were computed from psychometric functions measuring pure tone discrimination
accuracy as a function of frequency difference, expressed as theWeber fraction on
a log-scale. c Frequency discrimination thresholds measured from previous ideal
observer models and deep neural network models with different phase locking

limits. Thresholds for the ideal observermodels (gold and yellowmarkers) were re-
plotted from Ref. 12. Siebert (1970) analytically and Heinz et al. (2001) computa-
tionally derived the optimal task performance of models with access to either all
the available information (“all-information”) or only the “rate-place” (i.e., time-
averaged) information in auditory nerve representations. Deep neural network
model thresholds are plotted as themean across 10 network architectures for each
phase locking conditions (thick pink, purple, blue, and grey lines; error bars indi-
cate ±2 standard errors of the mean). Thin lines plot thresholds from individual
network architectures. Source data are provided as a Source Data file.
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was reflected in the effect on task performance. This finding suggests
that different domains likely use phase locking to different extents
depending on its utility for natural behavior. The results also under-
score that phase locking is critical for the twomain attentional cues to
speech (location and voice).

The comparison of machine learning models to humans also
provided insight into additional biological constraints that influence
human performance. Models whose neural networks had immediate
access to the left and right auditory nerve representations exhibited
superhuman sensitivity to interaural time differences (at much higher
frequencies than is seen in humans). Simply altering the model archi-
tecture to require monaural processing stages (and thus some loss of
temporal fidelity, as in the mammalian binaural system33,34,45) before
interaural integration produced more human-like behavior, account-
ing for results in every experiment we considered. In addition to
yielding amore comprehensivemodel of human localization behavior,
here the main contribution of our approach was to help understand
why interaural comparisons have an upper frequency limit below the
presumptive upper limit of phase locking in biological auditory sys-
tems. Our results suggest that the human auditory system did not
evolve to use interaural time differencesmuch above 1000Hz because
there is little benefit to sound localization in natural settings (perhaps
because time differences become ambiguous when wavelengths are
short relative to head size). This set of results illustrates how our
modeling approach enables normative understanding of sensory
physiology.

Relation to prior modeling work
Our approach draws inspiration from ideal observer theory, an early
application of which was to investigate the role of temporal coding in
hearing2,12 in simpler settings. Siebert first derived optimal solutions to
frequency discrimination given the information available in auditory
nerve responses to synthetic tones. He showed that optimal observers
using different features of neural coding yielded different patterns of
performance, but the resulting models severely overestimated human
performance. Later instantiations of this approach applied to more
realistic models of the nerve encountered similar issues12. The over-
estimation of human performance in such settings is perhaps unsur-
prising given that there is little reason to believe that the human
auditory system has been optimized for discriminating pure tones.
This is a central limitation of the classical ideal observer approach: the
simple tasks for which it is tractable to derive ideal observers are not
those that likely drove biological optimization processes. And for the
perceptual tasks that humans are plausibly optimized for (e.g.,
recognizing and localizing natural sounds)90, the derivation of pro-
vably ideal observers is intractable. The present results show how the
toolbox of contemporary deep learning provides an avenue to resur-
rect the ideal observer approach for real-world perceptual tasks. Even
though the resultingmodels are almost surely not fully optimal for the
tasks they are optimized for, they permit scientific inferences about
the consequences of optimization under biological constraints.

Other previous models proposed candidate neural mechanisms
for the extraction of timing information91–93. The main limitation of
mechanistic models is that they do not make extensive behavioral
predictions, and thus are difficult to test in the absenceof direct neural
evidence for the mechanism in question. Our approach is com-
plementary: we employ models that make behavioral predictions,
enabling the role of timing information to be tested noninvasively, but
at the expense of not addressing the underlying neural circuitry. Our
results nonetheless place some constraints on the underlying circuit
mechanisms by revealing the range over which phase locking matters
for real-world tasks. Phase-locked spike timing up to around 1000Hz
seems to be most critical for localization. Whereas for the word and
voice tasks virtually all benefit of phase locking incurs between 50 and
320Hz. These results implicate monaural mechanisms for extracting

phase locking in the range of hundreds of Hz, consistent with at least
one recent mechanistic proposal94.

The models developed here extend recent efforts to apply deep
learning to auditory modeling16,18,19,54,80,95. In addition to providing
models with fairly realistic simulations of the peripheral auditory sys-
tem (with an appropriate number of spiking nerve fibers), the present
experiments demonstrate substantially more extensive evidence for
close matches to human behavior than were available in previous
work. In particular, we show that task-optimized models replicate
human localization in noise (Fig. 3d), the upper frequency limit of ITD
discrimination (Fig. 4b and d), patterns of word recognition perfor-
mance across a large set of natural background noises (Fig. 5e), and
patterns of voice recognition performance across F0 manipulations
(Fig. 6b, c). These results provide additional evidence that much of
auditory perception can be accounted for with task optimization.

Relation to prior psychophysical work
A long tradition of psychophysical research has also attempted to test
the role of phase locking in perception35–38,40,96. Such studies have
typically used stimuli intended to isolate or remove information con-
veyed by phase locking, often by measuring the envelope and fine
structure from the output of a set of auditory filters, and then gen-
erating stimuli in which either the envelope or fine structure are ren-
dered uninformative or otherwise altered. One challenge for these
“vocoder” approaches is that if the resulting stimuli are analyzedwith a
filter bank that is distinct from the one used for stimulus generation,
information that was limited to one stimulus component (e.g. the fine
structure) during stimulus generation can appear in a different sti-
mulus component (e.g. the envelopes) of the analysis filter bank97,98. It
is thus difficult to know whether a stimulus that is intended to remove
a particular type of information actually succeeds in doing so once the
stimulus is represented in the ears of a listener.

Another challenge for these approaches is conceptual. The signal
processing distinction between envelope and fine structure is well-
defined at the stage of stimulus generation, but is lost at the auditory
nerve, which converts the entirety of the stimulus into a single repre-
sentation of spiking activity. Degradations of phase locking thus
potentially affect the encoding of both the envelope and fine structure
of a stimulus. For instance, the difference in performance that we
observed betweenmodels with phase locking cutoffs of 50 and 320Hz
could partially reflect degradation of what would traditionally be
considered envelope cues.

From our perspective, the experimental literature manipulating
envelope and fine structure may bemost productively treated as a set
of results that a model of the auditory system should account for.
Models allow us to set the interpretation of an experimental result
aside and instead ask whether a model reproduces the result, i.e.
whether it behaves similarly to humans under a particular stimulus
manipulation. We found such experiments to aid in distinguishing
models with different phase locking cutoffs (Fig. 7c), even when the
interpretation of the experimental manipulation on its own is uncer-
tain. Our results also indicate that tasks could vary in the extent to
which they require fine timing, such that the conclusions derived for
one task may not generalize to others99.

Limitations
The most obvious limitation of our approach is that there is no guar-
antee that current deep optimization methods and model archi-
tectures converge on optimal task solutions. Does a model without
access to phase locking fail to achieve human-like performance
because precise spike-timing information is strictly necessary for the
task or because the model is insufficiently optimized? In principle,
alternative model architectures and/or better optimization methods
could lead tomorehuman-likemodelswithoutprecise spike-timing, or
to models that could better exploit high-fidelity timing in the input,
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leading to a larger effect of the phase locking limit than we observed.
We hedged against these possibilities in two ways. First, we used
multiple neural network architectures for each model class, ensuring
that the reported results do not reflect the idiosyncrasies of any single
network architecture. Second, our conclusions do not hinge solely on
differences in absolute performance. We also compared the pattern of
human and model behavior across a broad range of psychoacoustic
experiments, allowing us to identify qualitative differences in how
models solve tasks given different types of peripheral input. The best
models achieved consistently good qualitative matches across a large
set of experiments. It nonetheless remains possible that the models
deviate substantially fromoptimality, or that the architecture class and
optimization method bias the models toward one of several solutions
that solve the task equally well.

Our conclusions also depend on the peripheral model stage
accurately capturing the information provided by the ear. Although
the model we used is well validated in nonhuman animals, we have
imperfect knowledge of the properties of the human ear, and inac-
curacies in the model assumptions could potentially limit the validity
of the conclusions. Moreover, although the nerve representation we
used is, to our knowledge, more realistic than that in previousmodels,
practical constraints nonetheless necessitated approximations (see
Methods) that could in principle affect the results.

Like ideal observers, optimizedmachine learningmodels can also
outperform human observers. Some of this may be attributed to
human attentional lapses during experiments. Biological systems also
may have sources of noise that are absent in our models. Apart from
spike sampling in the auditory nerve input (see Methods), our models
were deterministic. Ideal observers often posit decision stage noise to
bring model performance down to the level of humans2,12, and the
same logic and approach could be applied tomachine learningmodels
in the future.

Our approach relies on optimizing models for the “right” con-
straints, which by hypothesis are the tasks that are critical in daily life.
We optimized models for tasks that are plausibly important in this
sense, but the specific instantiations of the tasks were constrained by
practical considerations. For instance, the word recognition task is
limited to identifying the middle word in a speech clip, with a voca-
bulary that is large in absolute terms (794 words) but still substantially
smaller than the vocabulary of typical humans. Similarly, our sound
localization task was restricted to static sources in simplified rooms,
due to constraints of the head-related transfer functions and virtual
acoustic simulator used. These tasks aremore realistic than those used
in previous generations of models, but it is possible that the demands
of tasks that are even more realistic would alter the results. We also
built separate models for sound localization and speech perception
(again due to practical constraints). It is possible that the demands of
having to performmultiple tasks with the same auditory system could
affect the results. We addressed this concern to some extent by
training one model on both word and voice recognition. We found
results that were qualitatively similar to those obtained from separate
models optimized for each of the tasks individually, but in the one
experiment that showed a large effect of the phase locking limit on
word recognition, the effect of the limit was stronger in themodel that
was also optimized for voice recognition, suggesting that interactions
between task demands can influence task strategies. Particularly given
proposals that the fidelity of interaural time differences relates to
difficulties hearing in noise because of its effect on spatial
attention39,86, more complicatedmodels that concurrently localize and
recognize speech could provide additional insights.

Our approach is most diagnostic when there are differences in
human-model similarity acrossmodel conditions, and this is a function
of the experiments used to assess behavioral similarity. When human-
model behavioral similarity for a task does not vary across phase
locking limits, it is difficult to exclude the possibility that other

behavioral assays might show a difference. Specifically, we found little
difference in human-model similarity for voice and word recognition
for the three highest phase locking cutoffs. There is thus no evidence
in our present results that phase locking above 320Hz is used for
speech perception, but it remains possible that some other experi-
ment could reveal a distinction (akin to that seen for sound localiza-
tion). For instance, models optimized to estimate F0 require phase
locking upwards of 1000Hz to account for human pitch perception18,
raising the possibility that speech-related experiments that assess
more fine-grained use of pitch could show effects of higher phase
locking cutoffs. One way to address this in the future could be to use
themodels toderive stimulus conditions that producedifferent results
for different phase locking cutoffs100, and then to test humans on these
derived conditions.

Future directions
We have treated the neural network stages of our models as a black
box. Our models thus offer insight into which neural cues underlie
perception but do not reveal how these cues are extracted by biolo-
gical neural circuits91,94. Inprincipleone couldprobe the tuningof units
within the neural network, or relate the internal representations of
different model stages to those in the brain16,80,101,102. The absence of
realistic neural components in the models presented here limits the
relevance of such analyses to hypotheses for actual neural circuits for
extracting temporal information. However, future models with more
biological constraints have exciting potential to make progress on
these questions. For instance, one finding that at present lacks a nor-
mative explanation is the “sharpening” of phase locking that occurs in
some neurons in the cochlear nucleus despite having a lower overall
upper limit of phase locking45. Task-optimized models could help
evaluate the hypothesis that this sharpening aids the extraction of
information, for instance by revealing whether sharpened timing
emerges in intermediate stages prior to interaural comparisons.
Machine learning could also be combined with specific mechanistic
proposals for how brainstem circuitry may extract task-relevant
cues11,103. Such proposals could be built into a machine learning
model as an additional stage that is either fully fixed, or that has a small
number of tunable parameters. Asking if the resulting model better
accounts for behavior could help test mechanistic hypotheses. The
representations in such models could also be compared to brain
representations16,80, or to human EEG and ABR measures proposed as
diagnostics of temporal processing104,105.

Our approach has natural extensions for modeling sensorineural
hearing loss. The healthy auditory peripheral stage in our models
could be altered to simulate hair cell loss106 and/or cochlear
neuropathy107 to reveal their effects on auditory behavior. Optimizing
models with different hearing loss etiologies could yield insights into
the diverse behavioral outcomes of individuals with hearing loss. We
found that similarly accurate predictions of human behavior were
possiblewith a greatly simplified cochlearmodel stage (throughwhich
gradients can be backpropagated). This raises the possibility of
directly optimizing front-end processors53 (or even individual
sounds54,79,100) for perceptual outcomes in the model, which could be
useful for developing hearing aids and diagnostic behavioral tests.

A similar approach could be applied to cochlear implants, by
substituting simulations of electrically stimulated nerve fibers108 for
the nerve model used here. Most current cochlear implant proces-
sing strategies discard phase locking to the fine structure, but also
induce a number of other differences in auditory nerve responses
compared to those produced by a normal ear109–112. It is thus not clear
how much of the difficulties experienced by cochlear implant lis-
teners (e.g. impaired sound localization, pitch perception, and
speech intelligibility in noise) are primarily due to the loss of fine
structure rather than to other factors. Models optimized with dif-
ferent types of cochlear implant processing strategies could provide
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insight into these issues, and into the potential for alternative
strategies.

Another natural extension would be to investigate species
differences113. For instance, owls are known to use phase locking well
above 1000Hz for localization114,115. This difference with humans could
plausibly be driven by the smaller interaural time differences that
result from a smaller head, potentially coupled with differences in the
sounds owls and humans must localize. Models trained with head-
related transfer functions from an owl, and training data generated
from owl-relevant sounds, could provide insight into the pressures
that give rise to such species differences. The higher F0s of animal
vocalizations compared to human speech also raises the possibility
that non-human animal analogues of voice recognition could utilize
phase locking up to higher frequencies than we found implicated for
human voice recognition, which could in principle also be investigated
with our modeling framework.

The general approachof investigating neural coding features with
models optimized for ecological tasks is not limited to hearing. Similar
analysis of tactile perception could, for instance, elucidate the per-
ceptual role of high-fidelity temporal coding in touch26. More gen-
erally, the use of machine learning to reveal the consequences of
optimization under constraints has widespread potential for under-
standing links between biology and behavior.

Methods
Peripheral auditory model
The Bruce et al. (2018) auditory nerve model46 served as the primary
peripheral front-end to our artificial neural networks. This model
(henceforth referred to as the “detailed” auditory nerve model) was
chosen because it captures many of the complex response properties
of auditory nerve fibers and has been extensively validated against
electrophysiological data from nonhuman animals106,116–120. Stages of
peripheral signal processing in the model include: a fixed middle-ear
filter, a nonlinear cochlear filter bank to simulate level-dependent
frequency tuning of the basilar membrane, inner and outer hair cell
transduction functions, and a synaptic vesicle release/re-docking
model of the synapse between inner hair cells and auditory nerve
fibers. Although the model’s responses have only been directly com-
pared to recordings made in nonhuman animals, the cochlear filter
bandwidths in the versionused in this paperwere inferred fromhuman
behavioral and otoacoustic measurements121.

The output of the auditory nerve model was a three-dimensional
array of instantaneous auditory nerve firing rates with shape [N fre-
quency channels, T timesteps, S fiber types]. Due to computational
constraints, we simulated instantaneous auditory nerve firing rates at
N = 50 points along the cochlear frequency axis. Auditory nerve fiber
characteristic frequencies were spaced uniformly on an ERB-number
scale122 between 125 and 16,000Hz for the localization model and
between 125 and 8000Hz for the speech model. The speech model’s
upper characteristic frequency limit was lower because some of the
training data was derived from corpora with audio sampling rates of
16,000Hz (with a corresponding Nyquist limit of 8000Hz), reflecting
the common view that speech perception is dominated by cues below
8000Hz. Thehigher upper limit of the localizationmodel reflected the
established existence of localization cues above 8000 Hz78 (making it
critical to use a high audio sampling rate, and to represent high audio
frequencies, in a model of localization). The use of 50 frequency
channels primarily reflects computational constraints (CPU time for
simulating peripheral representations, storage costs, and GPU mem-
ory during training), but is justified in part by the smoothness of the
excitation pattern produced by the ear (i.e., the excitation pattern is
fairly lowpass, such that it canbe representedwith amodestnumberof
samples along the cochlear axis). In previous work we found that
increasing the number of frequency channels tenfold had little effect
on model behavior18. The instantaneous firing rates within each

channel were downsampled from 100 kHz (the nerve model’s default
sampling rate to which all audio was upsampled) to 10 kHz. The loca-
lization model operated on 1 s inputs (T = 10,000). The speech model
operated on 2 s inputs (T = 20,000). At each characteristic frequency,
we simulated responses of S = 3 different auditory nerve fiber types to
represent canonical high (70 spikes/s), medium (4 spikes/s) and low
(0.1 spikes/s) spontaneous rate fibers47. Fibers with different sponta-
neous rates vary systematically in their thresholds anddynamic ranges.
High-spontaneous-rate fibers have the lowest thresholds but smallest
dynamic ranges such that their firing rates saturate at conversational
speech levels.

This array of instantaneous firing rates was then converted to an
array of binomially sampled spike counts representing the population
response of 32,000 individual auditory nerve fibers per ear. This spike
sampling is an innovation over previous deep neural network models
of audition. The number of spikes occurring at each time-frequency-
fiber bin was sampled from a binomial distributionwith p = firing rate /
sampling rate and n determined by the relative numerosity of different
fiber types (n = fraction of fibers * 32,000 total fibers / N frequency
channels). We used 60% high-, 25% medium-, and 15% low-
spontaneous-rate fibers47. To reduce the computational cost of sam-
pling from 1.5 million (N ×T × S) independent binomial distributions
per ear and stimulus, we employed a Gaussian approximation. Rather
than directly sampling spike counts from Binomialðn,pÞ, we instead
sampled from Normalðnp,npð1� pÞÞ and rounded samples to the
nearest integer, yielding an approximate sample from the desired
binomial distribution. We did not attempt to model refractoriness in
nerve fiber responses on the grounds that summing across fibers
should minimize effects of refractoriness. To test this assumption, we
generated examples of an alternative set of nerve responses in which
each individual nerve fiber’s firing rate was set to zero for 1ms after
each spike was sampled. This resulted in a small reduction in the
overall number of spikes, but otherwise produced very similar
responses (the summed spike trains used as inputs to the neural net-
works were highly correlated to those obtained without modeling
refractoriness; r >0:99).

The high sampling rate of the model auditory nerve responses
was intended to ensure that the information in phase locking up to
3000Hz could be faithfully represented (the Nyquist limit for a
10 kHz sampling rate is 5 kHz, well above the highest limit used in our
models). However, the discretization of time that results from this
representation causes inter-spike intervals to be quantized, which
might be expected to result in some loss of information, particularly
at frequencies close to the upper limit of 3000Hz. To test whether
the downsampling of firing rates to 10 kHz could have limited the
benefit of high-frequency phase locking, we repeated all experiments
on the models with a 3000Hz phase locking limit, instead using an
auditory nerve sampling rate of 20 kHz. To keep model sizes and
architectures similar after doubling the input time dimension, we
modified the first two stages of each neural network to reflect the
higher sampling rate. Specifically, the kernels in the first two con-
volutional stages in each model had twice as many taps along the
time axis and the extent of temporal pooling in the second pooling
stage was doubled. We reasoned that these modifications would give
the models the best chance to extract information from high-
frequency phase locking without doubling the number of learnable
parameters in the final fully-connected layers (which would plausibly
create a confound that seemed better to avoid). Despite roughly
preserving the number of learnable parameters, the GPU memory
footprint of these higher-sampling-ratemodels is considerably larger
(because the output of the convolution operation contains
more activations). We were able to train the models by halving the
batch sizes and training for twice as many steps, thus keeping the
total number of training examples constant across the two
sampling rates.
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The 20 kHz sampling rate models produced extremely similar
results to the default 10 kHz sampling rate models (Supplementary
Figs. 12, 13, and 14). For the sound localization and voice recognition
models there were no statistically significant differences between the
20 kHz and 10 kHz models in overall task performance (p>0:07) or
human-model similarity (p>0:35). For the word recognition model,
there was a very small increase in overall task performance (48.0%
correct compared to the 47.3%, 47.5% and 46.8% correct for the 10 kHz
sampling rate models with 320, 1000, and 3000Hz phase locking
limits, p<0:01) but no increase in human-model similarity (p=0:29).
These results suggest the 10 kHz auditory nerve sampling rate did not
contribute to the lack of benefit observed for phase locking above
1000Hz. We also note that we compared neural network models
optimized for frequency discrimination to classical ideal observers for
frequency discrimination (Fig. 8). One of the neural networkmodels in
this comparison used an auditory nerve model stage with a 3000Hz
phase locking limit and a 10 kHz sampling rate, and closely matched
the ideal observer that used timing information (Supplementary
Fig. 12d). This latter result also suggests that the 10 kHz sampling rate
does not limit the timing information that can be extracted given the
3000Hz upper limit.

Phase locking manipulation
Thephase lockingmanipulationwas identical to that introduced inour
previous work18. We modified the upper frequency limit of phase
locking in the auditory nerve model by adjusting the cutoff frequency
of the IHC low-pass filter. In the unmodified auditory nerve model, the
low-pass characteristics of the IHCmembrane potential weremodeled
as a 7th order filter with a cutoff frequency of 3000Hz. We set this
cutoff to 3000, 1000, 320 and 50Hz.

Simplified cochlear model
The Bruce et al. (2018) auditory nerve model46 is computationally
expensive to run, requiring peripheral representations to be pre-
computed and stored on disk rather than generated on-the-fly during
neural network optimization. Simulated auditory nerve representa-
tions of the training datasets alone required 12 TB (localization task)
and 26 TB (speech tasks) per phase locking condition. We repeated
experiments with a simplified cochlear model hard-wired into the
neural network’s computation graph, eliminating the need to pre-
compute the nerve representation (we note that itmight eventually be
possible to instead approximate detailed auditory nerve models with
neural networks trained for this purpose123). The simplified front-end
consisted of a finite-impulse-response approximation to a gammatone
cochlear filter bank (with impulse responses truncated to 50ms) fol-
lowed by half-wave rectification and low-pass filtering to impose the
upper limit on phase locking. Simplified cochlear models operated on
50 kHz audio for the localization task and 20 kHz audio for the speech
tasks (the audio training data, which were the same as for models with
the detailed cochlear stage, were upsampled to these rates for
numerical convenience; they made downsampling easier on the GPU).
Low-pass filtering in the simplified cochlear model was performed by
convolving the rectified subbands with an impulse responsemeasured
from the Bruce et al. (2018) model’s IHC filter (truncated at 50ms and
then Hanning windowed). The finite-impulse-response approximation
of the IHCfilter ensured the frequency-dependence of phase locking in
the simplified cochlear model closely matched that of the detailed
model (Supplementary Fig. 9a). After low-pass filtering, cochlear
representations were downsampled to 10 kHz and passed through
pointwise sigmoid functions approximating the rate-level functions of
high-, medium-, and low-spontaneous-rate fibers. These sigmoid
functions ranged from0 – 250 spikes/s over a dynamic range of 20, 40,
or 80 dB for high-, medium-, and low-spontaneous-rate fibers with
respective thresholds of 0, 12, and 28 dB SPL. These stages yielded an
array of instantaneous auditory nerve firing rates with the same

dimensions as the detailed auditory nerve model. The spike sampling
procedure was identical between the simplified and detailed cochlear
models. We repeated the temporal coding manipulation in the sim-
plified cochlearmodel by setting the IHC low-passfilter cutoff to 3000,
1000, 320, and 50Hz.

Artificial neural network architectures
Simulated auditory nerve representations were passed as input to
deep convolutional neural networks, each consisting of a series of
feedforward layers. These layers were hierarchically organized and
instantiated oneof several simple operations: convolutionwith a linear
kernel, pointwise rectification, pooling, normalization, linear trans-
formation, dropout regularization, and softmax classification. Dropout
regularizationhelps prevent overfittingby randomly silencingnetwork
units during training, preventing learned solutions from being overly
dependent on any individual unit. Softmax classification re-scales
network output representations so they can be interpreted as prob-
ability distributions over output classes (the output representation for
each stimulus is a non-negative vector that sums to one).

For each task, we used 10 distinct neural network architectures
previously identified in large-scale random searches over archi-
tectural hyperparameters (e.g., number of layers, units per layer,
convolutional kernel size and shape, and pooling extent). The indi-
vidual architectures for each task are summarized in Supplementary
Tables 1 and 2. For the localization model, we used the top 10 best
performing architectures from Francl and McDermott (2022). These
architectures implement pooling and normalization via max pooling
and batch normalization operations19. For the speech models, we
took the best-performing architecture (modified to use Hanning-
weighted average pooling79 and layer normalization operations)
from Saddler and Francl et al.53 as a starting point. We then per-
formed a local architecture search by making 20 new architectures
via single hyperparametermodifications from the starting point (e.g.,
adding/subtracting one model stage, or changing the convolutional
kernel shape in one layer at a time). We used the 10 best-performing
networks from this local architecture search for the speech model
architectures.

Localization network architecture modification
Unlike the speech models, localization models operated on binaural
input. To provide this binaural input to the models, we concatenated
the auditory nerve representations from the simulated left and right
ear along the last axis of the input (that was also defined by the three
nerve fiber types). This resulted in a single array with shape [N fre-
quency channels, T timesteps, 2S fiber types]. Standard convolutional
model stages have three-dimensional kernels, which allow the opti-
mizable filters to integrate information across the last feature axis (i.e.,
between the ears in this case). Our default neural network archi-
tectures imposed no restriction on where in the model processing
hierarchy interaural cues could be extracted. To test the effect of
delaying interaural integration as happens in biological auditory sys-
tems, we replaced standard convolution operations in the earliest
model stages with “grouped” convolutions. Grouped convolutions
split their input representation along the feature axis and use a sepa-
rate convolutional kernelfilter for eachgroup124. Setting the number of
groups to 2 in the first convolutional layer separated the input for the
left and right ear. Successive convolutional stages with 2 groups
maintain separatemonaural processing streams. Interaural integration
then occurs at the first convolutional stage where the number of
groups is set to 1 (i.e., standard convolution). To delay interaural
integration in our networks until after significant temporal pooling had
occurred, we set the number of groups to 2 for all convolutional stages
prior to the point at which the representation was downsampled by a
factor of at least 4 relative to the nerve model stage output (from
10 kHz to no greater than 2.5 kHz). The convolutional stages replaced
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with grouped convolutions in the delayed interaural integration
models are highlighted in Supplementary Table 1.

Model optimization – overview
Artificial neural networks were optimized to perform real-world hear-
ing tasks operationalized as classification tasks. The training datasets
and individual tasks are described in the subsequent sections. In
general, training stimuli were labelled with a class (one label per task)
and neural network parameters were iteratively updated to minimize
the softmax cross-entropy loss function via stochastic gradient des-
cent (ADAM optimizer) with gradients computed via back-
propagation. Localization models trained for 200,000 steps with a
batch size of 32 and learning rate of 0.0001. Word and voice recog-
nition models trained for 400,000 steps with a batch size of 32 and
learning rate of 0.00001. The learning rates were arrived at empirically
as those that worked well for the task and architectures. Classification
performance on held-out validation sets was recorded after every
10,000 training steps. The neural network parameters producing the
highest validation set performance during the training routine were
used for the trained model. The number of steps in each model’s
training routine was chosen to obtain a plateau in validation set per-
formance under all phase locking conditions. Model training times
varied by architecture, but each model could be trained in 96 h on a
single NVIDIA A100 GPU on the MIT OpenMind Computing Cluster.
Localization models typically trained in under 48 h.

Model optimization – sound localization
We used the sound localization task of Francl and McDermott19 in
which models classified noisy 1 s auditory scenes according to the
azimuth and elevation of a target natural sound. The source location
classes spanned 360° in azimuth (5° bin width) and 0 to 60° in eleva-
tion (10° bin width), yielding a total of 504 output classes (72 azimuth
× 7 elevation classes). To ensure that the task was well-defined, the
training scenes always consisted of a single natural sound rendered at
one target location superimposed with real-world noise textures dif-
fusely localized at 3 – 12 different distractor locations. Target sounds
were taken from the Glasgow Isolated Sound Events125 (GISE-51) subset
of Freesound Dataset 50k126 (FSD50K), which consists of variable-
length recordings of individual sources spanning 51 categories of
everyday sounds. We only used source clips for which the original
44.1 kHz sampling rate audio could be found in FSD50K (to ensure that
spectral localization cues could be rendered faithfully). Our training
and validation datasets were generated from 12465 and 1716 unique
source clips, respectively. This was a substantial increase in target
sources compared to the previous modeling work of Francl and
McDermott19, with the goal of increasing the robustness of the
resulting model. For model evaluation and human experiments, we
used 460 sounds from the GISE-51 evaluation set equally distributed
across 46 sound categories (discarding 5 categories with fewer than 10
evaluation clips).

Texture-like background noise was sourced from a subset of the
Audioset127 corpus screened to remove nonstationary sounds (e.g.,
speech or music). The screening procedure involved measuring audi-
tory texture statistics81 (envelopemeans, correlations, andmodulation
power in and across cochlear frequency channels) from all recordings,
and discarding segments over which these statistics were not stable in
time, as in previous studies128,129. The screening procedure yielded
26515 and 562 unique 10 s noise clips for the training and validation
datasets, respectively. Auditory scenes for the training and validation
data were constructed by combining randomly sampled pairs of target
sounds and texture-like noise samples (sliced into 1 s segments).

As in previous work19, we augmented the number of unique target
waveforms by applying a randomly generated band-pass filter to the
target in 50% of training and validation examples. Band-pass filter
center frequencies were sampled log-uniformly between 160 and

16,000Hz. Bandwidths were sampled log-uniformly between 2 and 4
octaves and the filter order was drawn uniformly between 1 and 4.
Individual target and noise sources were first spatialized and then
summed together at SNRs uniformly drawn between -15 and +25 dB,
except for 5% of scenes which included no noise. For all localization
experiments, SNR referred to the target sound’s level relative to the
sum of all background noise sources.

To spatialize scenes, we used a virtual acoustic room simulator130

to render sets of binaural room impulses responses (BRIRs) for a
KEMAR in 2000 unique listener environments. The simulator used the
image-source method and incorporated KEMAR’s HRTFs131. We ran-
domly generated 2000 unique listener environments by sampling
different shoebox rooms (varying in size and wall materials) and lis-
tener positions (x, y, z coordinates and head angle) within each room.
Room lengths and widths were sampled log-uniformly between 3 and
30m and room heights were sampled log-uniformly between 2.2 and
10m. The listener’s head position was sampled uniformly in each
room, subject to the constraint that the head was at least 1.45m from
every wall and no higher than 2m from the floor. For each listener
environment, we rendered BRIRs at 1008 source locations (2 distances
from the listener × 72 azimuths × 7 elevations). One of the distances
was 1.4m for every BRIR. The other distance was independently sam-
pled for each BRIR (drawn uniformly between 1m and 0.1m less than
the distance from the listener to a wall). 1800 unique listener envir-
onments were included in the training set and the remaining 200were
used for validation. This was a substantial increase over the previous
model by Francl and McDermott19, whose data were generated from
only 5 rooms. The final training and validation datasets consisted of
1,814,400 and 201,600 binaural auditory scenes, respectively. Target
natural sounds were placed once at each of the 2000 × 1008 source
locations to ensure the dataset was balanced across the 504 target
location classes. Auditory scenes were presented to the model during
training at sound levels drawn uniformly between 30 and 90dB SPL.

Model optimization – word and voice recognition
The same dataset was used for theword and voice recognition training
tasks. We used an augmented version of the Word-Speaker-Noise
dataset79, which consists of 230,356 unique speech excerpts embed-
ded in 718,625 unique nonspeech background noise excerpts from
Audioset127. Randomly sampled pairs of 2 s speech and noise excerpts
were combined to yield a training dataset of 5.8 million examples. A
validation set of 370,000 examples was similarly constructed from
speech and noise excerpts excluded from training. Each example was
labeled with the talker that produced the speech utterance and the
word that appeared in the middle of the utterance (i.e., that over-
lapped the 1 s mark of the 2 s utterance). The datasets contained 433
unique talker labels and 794 unique word labels.

We chose this closed-set word recognition task in order to
facilitate supervised learning with a human-relevant task. We assume
that words constitute one of the output representations of human
speech recognition, and so are a good choice of model output
representation given the desire to optimize for biologically relevant
tasks. However, due to Zipf’s law, it is difficult to obtain large num-
bers of examples of infrequently occurring words. As a result, if one
includesmost Englishwords it is challenging to generate training sets
that are balanced across word labels (with similar numbers of
examples of each class, as is advantageous for supervised learning).
The main alternative at present would be to build a model using
methods from contemporary machine speech recognition, which
typically involves training systems to map audio to characters (with
subsequent stages to derive word labels from character strings).
Given that character strings seem a poor candidate for the output
representation of human speech recognition, we opted to instead
use aword recognition task with a vocabulary size forwhichwe could
assemble a balanced training set.
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Training models for voice recognition is complicated by the fact
that large speech corpora are often crowd-sourced online, with indi-
viduals contributing recordings of themselves reading passages or
responding to prompts. Models optimized for talker classification
using such corpora may pick up on non-voice cues that predict these
labels (e.g., characteristics of the recording device or environment). To
help ensure that models learned robust voice representations, we
applied a set of randomly sampled audio manipulations to the speech
to approximate the variable conditions in which human listeners
encounter the same voice. In 25% of the dataset, speech excerpts were
augmented to increase natural voice variability by applying small F0
( ± 0.5 semitones) and tempo shifts ( ± 20%) or simulating whispering
(<0.5% of examples) via the STRAIGHT algorithm132. In an indepen-
dently drawn 25%, we applied commonly encountered audio distor-
tions like band-pass / equalization filters, lossy audio compression /
transmission, and dynamic range companding. In another indepen-
dently drawn 5%, we replaced background noise with speech babble
(between 12 and 36 talkers, uniformly sampled) to give the model
some exposure to multi-talker situations. SNRs for the augmented
speech excerpts were drawn uniformly between -10 and +10 dB and
sound levels were drawn uniformly between 30 and 90dB SPL.

We jointly optimized individual models to recognize both voices
and words using this augmented dataset. Dual-task optimization was
accomplished with a separate output layer for each task. All preceding
network stages were shared between the two tasks and parameters
were updated to minimize the sum of the softmax cross entropy loss
from both tasks.

Model evaluation – overview
For each task, we first evaluated model behavior in naturalistic con-
ditions.Wherever possible, we tested humans on the same naturalistic
tasks using the same stimuli. For each task, we then tested models on
stimulus manipulations from the psychoacoustics literature and
compared behavior to human results. Human-model behavioral simi-
larity was quantified for each experiment and model by measuring
Pearson correlation coefficients and root-mean-squared error between
analogous human and model data points. In each experiment, we
present the results averaged across the 10 model architectures.

Human behavioral experiments – informed consent
All participants provided informed consent and the Massachusetts
Institute of Technology Committee on the Use of Humans as Experi-
mental Subjects (COUHES) approved all experiments.

Localization model evaluation – sound localization in noise
Human experiment. We measured the ability of human listeners to
localize natural sounds in noise using a 19-by-5 array of loudspeakers
arranged on a hemisphere with 2m radius. The array spanned 180° in
azimuth (frontal hemifield) and 0°–40° in elevation (10° spacing in
both azimuth and elevation) relative to the listener’s head at the cen-
ter. 11 normal-hearing listeners (5 female) with ages between 21 and
30 years each performed 460 trials with 460 unique target natural
sounds from the GISE-51 evaluation dataset. On each trial a target
natural sound was played from one of the 95 loudspeakers while
threshold-equalizing noise58 was played concurrently from 9 distinct
loudspeakers. Target and noise locations were randomly sampled on
each trial. The listener’s task was to report which loudspeaker pro-
duced the target by entering the loudspeaker’s label on a keypad.
Listeners were instructed to direct their head at the loudspeaker
directly in front of them for the duration of the stimulus. Once the
stimulus ended, they could look at the loudspeaker where they
thought the target had occurred to obtain the label. Listeners then
redirected their head toward the front loudspeaker prior to the start of
the next trial. Experimenter observation indicated that participants
were highly compliant with these instructions. Target sounds were

presented at 60 dB SPL (A-weighted) and noise levels were determined
such that the SNR of the target relative to the sum of the 9 noise
sources was -13.6, -6.8, 0, +6.8, or +13.6 dB. All stimuli were sampled at
44.1 kHz and were 1 s in duration, including 15ms onset and offset
ramps (Hanning window).

Model experiment. Models were tested on all combinations of the
460 target natural sounds, 5 SNRs, and 95 target locations (218,500
total stimuli) used in the human experiments. Sources were spatialized
in a virtual rendering of the loudspeaker array room human listeners
were evaluated in. To match the task between human and models, we
restricted model localization judgments to azimuth and elevations
corresponding to the 95 loudspeaker locations.

Human-model comparison. Human and model performance was
quantified by measuring mean absolute spherical error (great circle
distance), azimuth error, and elevation between the true and reported
target sound location (plotted in Fig. 3d). Human-model similarity
scores were the correlation (or root-mean-squared difference)
between these human and model error metrics as a function of SNR.

Localization model evaluation – psychoacoustics
We simulated an expanded version of the battery of localization
experiments used in Francl and McDermott19. 6 of the 8 psychoa-
coustic experiments we used were identical to those in Francl and
McDermott, using the same stimuli and analyses. The minimum audi-
ble angle and ITD lateralization experiments were the two additions,
included because they seemed potentially relevant to the use of phase
locking. All psychoacoustic stimuli for model localization experiments
were sampled at 44.1 kHz.

ITD / ILD cue weighting
Humanexperiment.We simulated the experiment ofMacpherson and
Middlebrooks (2002), which measured shifts in perceived azimuth for
virtual sounds with additional ITDs and ILDs imposed55. In the original
experiment, 13 participants (5 female) were played sounds over
headphones and reported perceived azimuth by turning their head to
face the virtual source. The experiment took place in an anechoic
chamber and used both low-pass (0.5–2 kHz) and high-pass (4–16 kHz)
100ms noise bursts with 1ms squared-cosine ramps at the onset and
offset.

Model experiment. We used identical stimuli spatialized in a virtual
anechoic room at 0° elevation and 0° to 360° azimuth in steps of 5°.
For each of the source locations and noise bands, we also separately
created ITD- and ILD-biased versions of the stimuli. ITD-biased ver-
sionsweregeneratedby imposing additional ±300 µs and±600 µs time
delays between the two ears. ILD-biased versions analogously imposed
additional ±10 and ±20dB level differences between the two ears. We
collected model azimuth predictions for each stimulus. Azimuth pre-
dictions in the rear hemifield were mapped to the frontal hemifield by
reflecting across the coronal plane. We compared the model azimuth
prediction for each ITD- and ILD-biased stimulus (“the biased azi-
muth”) to the azimuth prediction for the corresponding unbiased sti-
mulus (“the unbiased azimuth”), computing shifts in the biased
azimuth relative to the unbiased azimuth. Azimuth shifts for ITD-
biased stimuli were expressed in µs by subtracting the ITD of a real
source at the biased azimuth from the ITD of a real source at the
unbiased azimuth. Azimuth shifts for ILD-based stimuliwere expressed
in dB by subtracting the ILDof a real source at the biased azimuth from
the ILD of a real source at the unbiased azimuth. Expressing azimuth
shifts in cue units enables calculation of a dimensionless perceptual
weight by dividing the azimuth shift by the imposed cue amount.
Separate ITD and ILD perceptual weights were computed for low-pass
and high-pass noise by averaging across all azimuths and bias
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magnitudes. For instance, an ITD perceptual weight of 1 indicates that,
for a given virtual stimulus, an additional ITD of τ shifts the perceived
azimuth by an angle corresponding to an ITD change of τ between two
real source locations. A perceptual weight of 0 indicates that imposing
additional ITDs or ILDs has no effect on the perceived azimuth. These
weights are plotted for each frequency range and cue type in Fig. 3f.

Human-model comparison. Human-model similarity was quantified
by comparing ITD and ILD perceptual weights measured for low-pass
and high-pass noise between humans and models.

Minimum audible angle vs. azimuth
Human experiment. Mills (1958) measured human localization acuity
as a function of frequency and azimuth by playing pure tones to a
blindfolded listener from a rotating boom in an anechoic chamber.
Minimum audible angle thresholds were defined as the smallest
change in azimuth required for the listener to discriminate whether a
tone’s location shifted left or right between twopresentations. The key
result was that localization acuity was best near the midline and
degraded steadily towards the periphery. Mills (1958) only reported
thresholds froma single human listener68, but the general result is well-
established and holds across different experimental paradigms67.

Model experiment. We measured model thresholds by simulating a
left/right lateralization experiment. Pure tones (1 s duration including
70ms half-Hanning windows at onset and offset) were spatialized in a
virtual anechoic room at 0° elevation and azimuths of -90° to +90° in
steps of 0.5° (using linear interpolations of BRIRs spaced 5° apart). For
each tone, we collected the model’s probability distribution over
locations. These distributions were then multiplied by a mask assign-
ing zero probability to nonzero elevations and azimuths outside the
frontal hemifield (intended to replicate a human participant’s knowl-
edge that the tones to be discriminated were at this subset of all
possible locations). This resulted in probability distributions over
predicted azimuth in the frontal hemifield for each stimulus. Left/right
discrimination trials were simulated by comparing the expected value
of each stimulus location under the model’s output distributions for
pairs of stimuli rendered at different azimuths. We used the expected
value rather than the arg-max because the expected value provided a
fine-grained location estimate that allowed for more precise dis-
crimination thresholds. Trials inwhich the signedpredicted azimuthof
the second tone was larger than the signed predicted azimuth of the
first were counted as rightward judgments. Minimum audible angle
thresholds for different frequencies (250, 500, 750 and 1000Hz) and
reference azimuths (0°–75° in steps of 5°) were inferred from psy-
chometric functions (proportion of rightward shifts as a function of
azimuth difference) constructed from all possible trials within ±10°
azimuth of the reference for each frequency. Model minimum audible
angle thresholds were defined as the azimuth difference that yielded
70.7% rightward shifts (calculated by fitting Normal cumulative dis-
tribution functions to the psychometric functions).

Human-model comparison. We averaged human and model thresh-
olds across pure tone frequencies of 250, 500, 750, and 1000Hz to
yield a single results plot of accuracy vs. azimuth (plotted in Fig. 3h).
Human-model similarity was quantified by comparing average model
thresholdswith linearly interpolatedhuman thresholds as a functionof
absolute azimuth between 0° and 75°.

ITD lateralization vs. frequency
Human experiment. The upper frequency limit of fine structure ITD
sensitivity in humans has classically beenmeasured by asking listeners
to make left/right lateralization judgments with pure tones presented
over headphones. The pure tones have identical envelopes (by using a
fixed window to eliminate onset ITDs) and zero ILD (identical

amplitude between the two ears). Listeners hear pairs of tones with
different ITDs and judgewhether the second tone sounded left or right
of the first. The ΔITD threshold is the smallest change in ITD between
two tones that a listener can reliably discriminate in this way. We
simulated the experiment of Brughera et al. (2013), who measured
ΔITD thresholds of 4 young adult listeners (1 female) with 250, 500,
700, 800, 900, 1000, 1200, 1250, 1300, 1350, and 1400Hz pure
tones44.

Model experiment. We simulated the experiment on models by
measuring probability distributions over locations from models
tested on 500ms pure tone stimuli (including 100ms linear onset
and offset ramps). Fine structure ITDs ranged from -160 µs to 160 µs
in steps of 1 µs. Frequencies ranged from 50 – 4000Hz in steps of
50Hz. ΔITD thresholds were inferred from model judgments using
the same method as for the minimum audible angle experiment.
Model predictions were compared for pairs of stimuli with different
ITD, and rightward judgments were assigned to trials for which the
signed azimuth prediction was larger for the second tone than the
first. Psychometric functions were constructed for each frequency
(proportion of rightward shifts as a function of ΔITD) and the ΔITD
threshold was defined as the difference in azimuth yielding 70.7%
rightward shifts. These thresholds are plotted vs. frequency in Fig. 4b
and d.

Human-model comparison. Human-model similarity was quantified
by comparing log-transformed model thresholds with linearly inter-
polated human thresholds as a function of frequency between 250 and
1500Hz.

Effect of changing ears
Human experiment. We simulated a change in our models’ pinnae
intended to be analogous to themanipulation of Hofman et al.57. In the
original experiment, 4 participants localized white noise bursts pre-
sented in a 4-by-4 grid uniformly tiling ±20° in azimuth and ±20° ele-
vation. Participants reported perceived locations by making eye
movements to the source. After collecting baseline azimuth and ele-
vation judgments, plastic molds were inserted in the participants ears,
which altered the direction-specific filtering of their pinnae (Supple-
mentary Fig. 3a). Participants then repeated the localization task with
modified pinnae57.

Model experiment. We simulated the experiment by collecting base-
line model azimuth and elevation judgments with the same stimuli
used in the original human experiment (500ms noise bursts with a
frequency band of 0.2 to 2 kHz) and then switching out the KEMAR
HRTFs the model was trained with for 45 different sets of HRTFs from
the CIPIC dataset133. We note the use of different real HRTFs plausibly
involves less drastic changes than produced by inserting molds into
the ears. Model azimuth and elevation predictions were collected for
stimuli spatialized on 4-by-4 grid uniformly tiling ±30° in azimuth and
0°–30° in elevation (Supplementary Fig. 3b). Azimuths and elevations
were not matched exactly to the human experiments due to con-
straints of the available HRTFs. We averaged model judgments across
the 45 different sets of HRTFs not used to train the model to compare
against human judgments with modified pinnae.

Human-model comparison. To summarize the effects of changing
pinnae on azimuth and elevation accuracy, we computed changes in
mean absolute azimuth and elevation error with the untrained pinnae
relative to the trained pinnae, averaging across all 16 source locations,
yielding the graph of Supplementary Fig. 3c. Human-model similarity
was quantified by comparing absolute azimuth and elevation errors as
a function of grid position and ear condition (as shown in Supple-
mentary Fig. 3a, b) between humans and models.
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Effect of smoothing spectral cues
Human experiment. We simulated a modified version of the experi-
ment originally conducted by Kulkarni and Colburn (1998), which
measured the effect of HRTF spectral details on sound localization56. In
the original experiment, 4 listeners were played white noise bursts in
an anechoic chamber. Sounds were presented from either a physical
loudspeaker in the room or virtually over open-backed headphones.
The virtual sounds were spatially rendered at the loudspeaker’s loca-
tion using the participant’s own HRTFs. Participants were tasked with
reporting whether the sound came from the loudspeaker or the
headphones. When the participants’ full HRTFs were used, perfor-
mance was at chance (50%). As the spectral details of the HRTFs were
smoothed out by approximating the HRTF’s discrete cosine transform
with progressively fewer cosines (Supplementary Fig. 3d), perfor-
mance rose above chance as participants no longer perceived the
virtual stimuli at the loudspeaker’s location.

Model experiment. We applied the same smoothing manipulation to
the KEMAR HRTFs (by retaining only the first 256, 128, 64, 32, 16, 8, 2,
or 1 coefficients of the HRTF’s discrete cosine transform) and eval-
uated model performance in a virtual anechoic room using 1 s broad-
band (0.2–20 kHz) noise bursts. Model localization judgments were
collected for each smoothing condition at 413 locations spanning
0°–60° in elevation and 0°–360° in azimuth (spacing determined by
the locations of the measured KEMAR HRTFs). We computed mean
absolute azimuth, elevation, and spherical errors as a function of the
number of cosines used to approximate the HRTFs (plotted in Sup-
plementary Figs. 2f and 3e).

Human-model comparison. Reasoning that higher absolute localiza-
tion errors in the model would correspond to better performance on
the human real/virtual discrimination experiment, we quantified
human-model similarity by comparing model absolute spherical error
and human percent correct scores as a function of the smoothing
parameter (Supplementary Fig. 2f).

Precedence effect
Human experiment. We simulated an experiment originally con-
ducted by Litovsky and Godar (2010), which measured localization
accuracy for 25ms (including 2ms cosine onset and offset ramps) pink
noise bursts played at two different locations134. The bursts were
played from two loudspeakers in an array spanning −60° to +60° in
azimuth (20° spacing, 0° elevation) and were delayed relative to one
another by 5, 10, 25, 50, or 100ms. The lag click was always presented
at 0° azimuth and the lead click was presented variably at one of six
azimuths ( ± 20°, ±40°, ±60°) on each trial. 10 listeners (all female) with
ages between 19 and 26were taskedwith reportingwhether they heard
one or two sounds as well as the loudspeaker that produced each
sound. Root-mean-squared azimuth errors were calculated separately
for the lead and lag noise burst and reported as a function of the delay
between the lead and lag bursts.

Model experiment. We evaluated models on the same stimuli ren-
dered in a virtual anechoic room. Our models always reported a
single location which we used to compute the root-mean-squared
azimuth error relative to both the lead and lag burst. The “pre-
cedence effect” refers to several different phenomena that occur
when two sounds are played in close succession from different
locations135. The model judgments can reflect one of these (the
localization dominance of the leading sound), but because the
models cannot report the presence of more than one sound source
location, they cannot explicitly exhibit one of the other main pre-
cedence phenomena (the perception of two distinct sources when
the delay between leading and lagging clicks is large). Human and
model results are plotted in Supplementary Fig. 2g.

Human-model comparison. Human-model similarity was quantified
by comparing human and model azimuth error for both the lead and
lag burst as a function of the inter-burst delay.

Bandwidth dependence of localization
Human experiment. We simulated the experiment of Yost and Zhong
(2014), which measured the effect of stimulus bandwidth on localiza-
tion accuracy with an array of 8 loudspeakers positioned between -15°
and +90° in azimuth (15° spacing) relative to the midline77. 33 partici-
pants (26 female) with ages between 18 and 36 were tasked with
reporting which loudspeaker produced a 200ms (including 20ms
squared cosineonset andoffset ramps) sound. Stimuli werepure tones
or band-pass filtered white noise bursts with bandwidths of 1/20, 1/10,
1/6, 1/3, 1, and 2 octaves. Pure tone and center frequencies were set to
250, 2000, and 4000Hz. Human listeners made 20 localization judg-
ments per bandwidth, center frequency, and loudspeaker position.

Model experiment. We evaluated our models on simulations of the
stimuli from the original human experiment, rendering sounds in a
virtual anechoic roomat azimuths of −90° to +90° in steps of 5°.Model
localization judgments were restricted to the frontal hemifield and 0°
elevation. Human and model results are plotted in Supplemen-
tary Fig. 2h.

Human-model comparison. Human-model similarity was quantified
by comparing human and model root-mean-squared error as a func-
tion of bandwidth (averaged across center frequencies).

Median plane spectral cues
Human experiment. We simulated a modified version of the experi-
ment by Hebrank and Wright (1974), which measured the accuracy of
human elevation judgments as a function of the frequency content of
noise bursts78. In the original experiment, 10 participants were played
1 s noise bursts from a vertical array of loudspeakers along themedian
plane spanning −30° to +210° in elevation with 30° spacing (0° is
frontal). The experiment took place in an anechoic chamber and par-
ticipants were tasked with reporting which loudspeaker produced the
noise burst. Noise bursts were either low-pass or high-pass with vary-
ing cutoff frequencies: 3.9, 6.0, 8.0, 10.3, 12.0, 14.5 or 16.0 kHz for the
low-pass noise and 3.8, 5.8, 7.5, 10.0, 13.2 or 15.3 kHz for the high-
pass noise.

Model experiment. We evaluated our model on noise bursts with the
same cutoff frequencies rendered in a virtual anechoic room at ele-
vations of 0°, 30°, 60°, 120°, 150°, and 180° along themedian plane. To
match the task between human and models, we restricted model
localization judgments to azimuth and elevations along the median
plane (model localization judgments corresponded to the highest
softmax probability location class with azimuth 0° or 180°). Human
and model results are plotted in Supplementary Fig. 2i.

Human-model comparison. Human-model similarity was quantified
by comparing human and model percent correct scores as a function
of noise type and frequency cutoff.

Speech model evaluation – word and voice recognition as a
function of SNR and noise type
Human word recognition experiment. We measured human word
recognition accuracy as a function of SNR for four different types of
background noise16 using an evaluation set of 376 unique speech
excerpts (held out from the model training and validation sets). The
experiment was a replication of an experiment by Kell et al.16, modified
to use words in the vocabulary of the models presented in this paper.
The four types of noise were “auditory scenes”, speech babble,
instrumental music, and speech-shaped noise. The experiment also
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included a fifth noise condition which was not analyzed here. For the
first three conditions, background noise excerpts (376 per condition)
were sourced from IEEE AASP CASA Challenge136 (auditory scenes),
CommonVoice137 (8-talker speech babble), and MUSDB18138 (instru-
mental music). The babble was generated by summing speech
excerpts from 8 different talkers. Speech-shaped noise was synthe-
sized for each evaluation speech clip by imposing the power spectrum
of the same speech clip on white noise. Speech excerpts were com-
binedwith background noise from each condition at 6 SNRs (noiseless
and -9, -6, −3, 0, +3 dB) yielding 9024 possible stimuli (376 speech
excerpts × 4 noise type × 6 SNRs). Stimuli were 2 s in duration and
sampled at 20 kHz. Individual participants heardonly 376 stimuli (each
unique speechexcerptwas presentedonce), uniformly sampled across
SNRs and noise types. To match our model word recognition task,
participants were asked to report which word (from a list of 793)
appeared in themiddle of the utterance (defined as overlapping the 1 s
mark). Participants typed responses into a textbox and, as they typed,
the displayed list of 793 words was filtered to include only words that
matched the entered string. Only responses from the word list could
be submitted. The experiment was run online and included 44 parti-
cipants (13 female, 30 male, 1 nonbinary) who self-reported normal
hearing, passed a headphone check139, completed at least 100
trials (some participants experienced connectivity issues that pre-
vented them from completing the entire experiment, but because
trials were randomly ordered their data could be included without
compromising the analysis), and responded correctly to at least 85%of
catch trials intended to make sure they were paying attention to the
experiment (isolated words presented in silence). Here and in all other
online experiments, participants heard a calibration sound and
adjusted the presentation level to be comfortable prior to the start of
the experiment. Participants ages were between 18 and 62 (median 36)
years. We did not run an analogous voice recognition experiment as
therewas noway to test humans andmodels in the sameway (because
every human is familiar with an idiosyncratic set of voices).

Modelword and voice recognition experiment. Wemeasuredmodel
word and voice recognition accuracy as a function of SNR and noise
type using the same stimuli as for the human experiment. Each of the
376 speech excerpts had awordandvoice label included in the training
dataset (376 unique words from 164 talkers). For the model experi-
ment, the speech level was fixed at 60dB SPL and noise levels were
adjusted to give the desired SNRs. Models were evaluated on the full
evaluation set (9024 stimuli). Results are plotted in Fig. 5b, c.

Human-model comparison.Wequantifiedhuman-model similarity by
comparing human andmodel word recognition accuracy as a function
of SNR and noise type.

Speech model evaluation – word and voice recognition in nat-
uralistic auditory textures
Human word recognition experiment. To probe human speech-in-
noise recognition at a larger scale (to obtain a stronger model com-
parison test), we measured human word recognition accuracy in 43
different naturalistic auditory textures. The 376 speech excerpts from
the evaluation set were embedded in 376 unique exemplars of each
auditory texture. The 2 s texture exemplars were previously
generated19 to match the statistics of 43 recorded real-world textures
and the success of the iterative synthesis algorithm81 was determined
both subjectively (synthesized exemplars sounded like the recorded
textures) and objectively (mean-squared errors between synthetic and
original texture statistics were at least 40dB below the mean-squared
texture statistics of the original recordings). The experiment was
identical to the previous word recognition experiment, except
that excerpts were randomly assigned to one of the 43 texture con-
ditions and the SNRwasfixed at−3dB.The online experiment included

47 participants (24 female, 23male) who self-reported normal hearing,
passed a headphone check139, completed at least 100 trials, and
responded correctly to at least 85% of catch trials (isolated words
presented in silence). Participant ages were between 23 and 59 (med-
ian 39) years.

Modelword and voice recognition experiment. Wemeasuredmodel
word and voice recognition accuracy for speech embedded in each
of 43 auditory textures, using the same stimuli as for the human
experiment. Models were evaluated on the full evaluation set
(16,168 stimuli = 376 speech excerpts × 43 auditory textures). Human
and model results are plotted in Fig. 5e, f.

Human-model comparison.Wequantifiedhuman-model similarity by
comparing human andmodel word recognition accuracy as a function
of the 43 auditory textures. The noise-corrected explained variance
was calculatedbydividing thehuman-model Pearson r2 by theproduct
of the human and model split-half reliabilities (after Spearman-Brown
correction).

Word and voice recognition with F0-altered speech
Human voice recognition experiment. We ran a modified version of
the voice recognition experiment of McPherson and McDermott
(2018), which measured human listeners’ ability to recognize F0-
altered voices from famous celebrities85. Stimuli were 4 s speech
excerpts from 37 recognizable politicians, actors, singers, and televi-
sion hosts. In the first block of 37 trials, each participant heard all 37
voices randomly assigned to one of 8 F0-manipulation conditions
(inharmonicor shifted±12, ±6, ±3, 0 semitones from theoriginal F0). In
the second block of 37 trials, each participant heard different excerpts
of the same 37 voices with no F0 shift. Each participant’s results were
analyzed only for first the block, limited to just the celebrity voices
they successfully recognized in the second block and identified as
familiar in a pre-experiment survey (an attempt to only measure per-
formance for familiar voices, to make for a fairer comparison with the
models). All stimuli were resynthesized with the STRAIGHT
algorithm132. Voices were made inharmonic by shifting harmonic fre-
quency components above the fundamental by random amounts
uniformly sampled between −50% and +50% of F085,87. Jitter values
were sampled independently for each harmonic frequency and voice
clip but were constrained (via rejection sampling) such that adjacent
harmonics were always separated by at least 30Hz. The experiment
was a 100-alternative forced-choice task. Participants entered
responses into a textboxwhich filtered a displayed list of 100 celebrity
names and descriptors (e.g., “Dolly Parton (country singer-song-
writer)”) until there was only a single match, which the participant
could submit. This procedure deviated slightly from the original
McPherson and McDermott experiment, which was open set, and
required the experimenter to then score participant’s text responses
by hand. The procedure adopted here standardized responses while
maintaining some of the benefits of an open set experiment (mini-
mizing the chance that participants would artifactually boost their
scores by using a process of elimination with the list of possible voice
choices). The experiment included 112 participants (46 female, 65
male, 1 nonbinary) who self-reported normal hearing and passed a
headphone check139. Participant ages were between 20 and 73 (median
39) years. Because analysis was limited to voices for which participants
demonstrated familiarity and each voice could only be assigned to one
F0 condition, the number of participants for each condition ranged
from 87–95.

Human word recognition experiment. We measured human word
recognition accuracy for the same8F0 conditions using the 376model
evaluation set speech excerpts. The experiment was identical to the
word recognition in noise experiments, except that excerpts were
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randomly assigned to one of 8 F0 conditions (synthesized with the
same procedure used for the voice recognition experiment) and pre-
sented in quiet. The online experiment included 22 participants (8
female, 14 male) who self-reported normal hearing, passed a head-
phone check139, completed at least 100 trials, and responded correctly
to at least 85% of catch trials (isolated and unaltered words presented
in silence). Participant ageswerebetween 25 and 70 (median 38) years.

Modelword and voice recognition experiment. Wemeasuredmodel
word and voice recognition accuracy on the F0-manipulated evalua-
tion set used in the humanword recognition experiment.We collected
model word and voice predictions for the 376 speech excerpts in each
of 10 F0 conditions (inharmonic or shifted ±12, ±9, ±6, ±3, 0 semitones
from the original F0). Human and model results are plotted in
Fig. 6b, c.

Human-model comparison. Human-model similarity across F0 con-
ditions was quantified with separate correlation coefficients (or root-
mean-squared error) for word and voice recognition. We compared
humanandmodelwordor voice recognition scores as a functionof the
8 shared F0 conditions.

Word recognition with tone-vocoded speech
Human experiment. We simulated an experiment originally con-
ducted in humans by Hopkins and Moore (2009), which measured
speech reception thresholds in stationary and modulated noise using
progressively tone-vocoded speech38. In the original experiment,
speech stimuli were split into frequency subbands with a 32-channel
cochlear band-pass filter bank with center frequencies equally spaced
on an ERB-number scale122 between 100 and 10,000Hz. Frequency
channels above a set cutoff channel (which determined the “number of
channels with intact TFS”) were tone vocoded, intended to disrupt
temporal fine structure. Channels were tone vocoded by imposing the
temporal envelope (absolute value of the Hilbert transform) of the
original speech subband on a pure tone carrier at the channel’s center
frequency. Tone-vocoded subbands were band-pass filtered using the
corresponding filter from the cochlear filter bank and summed toge-
ther with the remaining unmodified subbands. The resulting stimuli
were presented to listeners in both stationary and modulated speech-
shaped noise.Modulated noisewas amplitude-modulatedwith an 8Hz
sinusoid on a decibel scale with a peak-to-valley ratio of 30 dB. Human
speech reception thresholds were measured from 10 normal hearing
participants using an adaptive procedure that tracked the SNR needed
to achieve 50% of words correct. Hopkins and Moore (2009) reported
speech reception thresholds with the cutoff channel set to 0, 8, 16,
24, and 32.

Model experiment.We applied the same stimulusmanipulation toour
376 evaluation set speech excerpts and measured model word
recognition accuracy for speech in stationary and modulated noise at
SNRs of −15 to +15 dB in increments of 3 dB. We used the speech-
shaped noise from the word recognition experiment described above
(and shown in Fig. 5b). Amplitude-modulated noise was generated by
applying the same 8Hz sinusoidal envelope used in the human
experiment to the speech-shaped noise. Speech reception thresholds
were calculated for themodel by fitting a sigmoid to the psychometric
function (word recognition accuracy as a function of SNR) for each
condition and selecting the SNR that yielded half-maximal perfor-
mance. We measured model speech reception thresholds with the
cutoff channel set between 0 (all channels tone vocoded) and 32 (all
channels intact) in steps of 4. Because our models were trained with
speech sampled at 20 kHz, the 32-channel Gammatone filter bank used
to synthesize model stimuli had center frequencies equally spaced on
an ERB-number scale between 80 and 8000Hz rather than 100 to
10,000Hz.

Human-model comparison. As in the original analysis byHopkins and
Moore, human and model speech reception thresholds for both noise
types were expressed relative to that for speech with all channels
vocoded (i.e., subtracted from the thresholdwith cutoff channel set to
0). Human-model similarity was quantified by comparing this “benefit
from TFS” as a function of SNR and noise type between humans and
models.

Speech localization in noise and reverberation
The purpose of this experiment was to evaluate the models’ perfor-
mance in another setting inwhich phase locking has been proposed to
influence speech recognition—that inwhich spatial attention is used to
select a target talker amongst distractor talkers39,86. We currently lack
models that can perform attentional selection tasks, such that it was
not possible to conduct a model version of the published human
experiments in this domain. Instead, we measured the effect of phase
locking on the localization of speech, based on the logic that impaired
localization of speech would translate to impaired spatial attention in
cocktail party settings.We specifically tested conditionswith noise and
reverberation that have been found to produce individual differences
in behavior that might be related to individual differences in the
integrity of temporal coding in the auditory periphery.

Model experiment. Localization models were evaluated on the
376 speech excerpts from the evaluation set (nerve representations
truncated to 1 s) spatialized in both a virtual anechoic room and a
virtual reverberant room. The reverberant (RT60 = 1 s) room was a
rendering of our loudspeaker array room from the localization-in-
noise experiment described above (and shown in Fig. 3c, d). For the
anechoic room, we changed all simulated room materials to be per-
fectly absorptive. Each speech clip was assigned to one of 9 loud-
speaker locations (spanning −80° to +80° azimuth in steps of 20°) 2m
from the simulated listener. On each trial, threshold-equalizing noise58

was played from the remaining 8 loudspeaker locations. The speech
levelwasheld constant at 60dBSPL, and the total noise levelwas set to
produce 9 different SNRs uniformly tiling −24 to +24 dB. Model loca-
lization judgments (restricted to the 9 possible locations) were col-
lected for each of the resulting 6768 stimuli (376 speech excerpts × 2
reverberation conditions × 9 SNRs). Separate psychometric functions
were constructed for each reverberation condition by calculating the
proportion of correct trials as a function of SNR. Speech localization
thresholds were defined as the SNR yielding 70.7% trials correct, line-
arly interpolated.

Statistics. The statistical significance of the interaction between phase
locking and reverberation conditions was assessed with a permutation
test analogous to a mixed model ANOVA. An F-statistic was computed
from the speech localization thresholds, with phase locking cutoff as a
between-subjects factor and reverberation as a within-subjects factor.
The F-statistic was re-computed 10,000 times with permuted rever-
beration labels to assemble the null distribution used to calculate a p-
value for the actual F-statistic.

Aggregate measures of task performance in noise
To summarize model task performance in noise (Fig. 2), we averaged
model results across noise conditions for each task. For sound locali-
zation, we averaged mean absolute spherical errors across the 5 SNR
conditions in Fig. 3d (−13.6, −6.8, 0, +6.8, and +13.6 dB). For word and
voice recognition, we averaged recognition accuracy across the 5 SNR
(−9, −6, −3, 0, and +3 dB) and 4 noise type conditions in Fig. 5b, c. We
calculated 95% confidence intervals for each task performance sum-
mary metric by bootstrapping the model mean (sampling 10 neural
network architectures with replacement 1000 times); these con-
fidence intervals are plotted as the error bars on task performance in
Fig. 2. The statistical significance of the effects ofmodelmanipulations
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(degraded phase locking or delaying interaural integration) on overall
task performance in noise was assessed by comparing mean task
performance metrics against bootstrapped null distributions from the
3000Hz phase lockingmodel task performancemetrics. Two-tailed p-
values were estimated fromGaussian fits to these null distributions (as
the probability of obtaining a score more extreme than that obtained
from each degraded phase locking model under the null distribution).
Effect sizes are quantified by measuring differences in the mean
(Fig. 2a–c) or Cohen’s d (Fig. 4e) between bootstrapped distributions
of human-model similarity scores from different phase locking
conditions.

Aggregate measures of human-model similarity
Human-model behavioral similarity was quantified separately for each
model and experiment, first with a Pearson correlation coefficient. In
each case, we comparedmeanmodel behavior (averaged across the 10
neural network architectures) with mean human behavior (averaged
across experiment participants). We calculated 95% confidence inter-
vals for each human-model similarity value by bootstrapping the
model mean (sampling 10 neural network architectures with replace-
ment 1000 times). The statistical significance of the effects of model
manipulations (degraded phase locking or delaying interaural inte-
gration) onoverall human-model similaritywas assessedby comparing
mean human-model similarity scores against bootstrapped null dis-
tributions from the 3000Hz phase locking model human-model
similarity score (same analysis as for task performance metrics). Two-
tailed p-values are reported, and effect sizes were quantified by mea-
suringCohen’s d betweenbootstrappeddistributions of human-model
similarity scores from different phase locking conditions.

To ensure conclusions were robust to the choice of similarity
metric, we repeated human-model comparisons by measuring root-
mean-squared (RMS) error between analogous human andmodel data
points. Data were first min-max normalized within experiments
(rescaling human data to range from0 to 1 across conditions, and then
applying the same scaling factors to model data) to account for dif-
ferent units and scales across experiments. For the three word
recognition experiments that measured proportion correct in differ-
ent conditions (type of background noise, SNR, or F0 manipulation),
the same min/max human scores (computed across all conditions)
were used to normalize data. This prevented experiments that pro-
duced null effects (i.e., the lack of an effect of F0 manipulation on
human word recognition) from artificially inflating the mean
RMS error.

The two human-model similarity metrics measure different
things. The correlation metric assesses the similarity in relative per-
formance across conditions, whereas the RMS error can reflect abso-
lute differences in performance between a model and humans. A
“good”model should exhibit high similarity on both metrics. A model
only needs to exhibit substantially lower similarity on onemetric to be
ruled out. This was the scenario we found for word recognition, where
models with different phase locking limits were distinguished more
clearly by the correlation metric (Fig. 2) than by the RMS metric
(Supplementary Fig. 1).

We note that these two types of metrics have in some cases yiel-
ded inconsistent conclusions regarding previous ideal observer
models12. Specifically, ideal observers of frequency discrimination that
use information from phase locking exhibit much better absolute
performance than humans, but replicate the qualitative dependenceof
thresholds on frequency. By contrast, ideal observers that do not have
access to phase locking exhibit absolute thresholds closer to those of
humans, but do not replicate the human dependence on frequency.
Here we instead found the two types of metrics to yield comparable
conclusions, in that models with the lowest phase locking limits never
exhibited higher human-model similarity irrespective of which metric
was used. Moreover, the models with higher phase locking limits

generally matched both absolute and relative performance and thus
scored relatively well with both metrics. One difference compared to
previous work is that our models were optimized for real-world tasks,
and evaluated in real-world conditions as well as more traditional
laboratory psychoacoustic assessments. We have found (here and
elsewhere18,19) that such models tend to produce both absolute and
relative performance on par with humans. This general finding is
consistent with the idea that absolute performance reflects the
demands of optimization for ecologically important tasks, such that
optimizing amodel for such tasks produces absolute performance that
is close to that of humans.

Comparison to ideal observer models of frequency
discrimination
We strived to match the conditions of Heinz et al. (2001)’s ideal
observer as closely as possible. We used the same auditory nerve
model12 and generated stimuli in the same way (all stimuli had cosine
phase, were 200ms in duration padded with 50ms of silence, and had
level roving of ±3 dB). Pairs of simulated auditory nerve representa-
tions of pure tones were presented to networks as two-channel inputs
with shape [60 characteristic frequencies spanning 100–10,000Hz,
5000 timesteps sampled at 20 kHz, 2 channels for the paired inputs].
This architectural choice gave the neural network flexibility to make
comparisons between the two tones at any stage of representation
within the feedforward processing stream, which we thought would
increase the chances of finding a model that performed the task well.
Spike counts were sampled from 200 high spontaneous-rate auditory
nerve fibers per characteristic frequency. Sound levels were sampled
independently for each of the tones in a trial (uniformly between 37
and 43dB SPL). As the ideal observer was separately derived for each
frequency,we separately trainedmodels for 11 different quarter-octave
frequency bands with center frequencies ranging from 250 to
8000Hz. Frequencies above 8000Hz were not considered to avoid
influence from themodel’s maximum characteristic frequency. Within
each band, training trials were generated by randomly sampling the
frequency of the first tone (f 1, log-uniformly within the band), the
interval magnitude I (log-uniformly between 1e-6 and 1e-1 octaves),
and the interval direction (+ or - with equal probability). The frequency
of the second tone in the trial (f 2) was equal to f 2 = f 1 × 2

± I .
Like the localization and speech models, the frequency dis-

crimination models were feedforward convolutional neural net-
works. The output layers always had a single unit with a sigmoid
activation function tomapoutputs between0 and 1, representing the
probability that f 2 > f 1. The network architectures were selected in a
two-stage architecture search. First, we trained the top 100 networks
from a prior random architecture search (conducted in earlier pitch
modeling work18) on the frequency discrimination task using trials
from all 11 frequency bands. We selected the best-performing archi-
tecture from this set and then performed a smaller local architecture
search around this architecture by making 20 altered versions of it
(e.g., by adding/removing a layer and enlarging/reshaping individual
convolutional kernels). Finally, we selected the 10 top-performing
neural networks from this set of 20 to use for our frequency dis-
crimination models (Supplementary Table 3). The architecture
search used auditory nerve representations with a 3000Hz IHC filter
cutoff.

Models with 3000, 1000, 320, and 50Hz IHC filter cutoffs were
then separately trained on each frequency band. Each model was
trained on 640,000 trials using the Adam optimizer to minimize the
binary cross-entropy loss function. We used a batch size of 32 and an
initial learning rate of 1e–5 that decreased by a factor of 10 every
5000 steps. We evaluated the models on 10500 within-distribution
trials by keeping f 1 equal to the center of the frequency band and
ranging the interval magnitude from 5e–7 to 5e-1 octaves. We con-
structed psychometric functions for each model and frequency band;
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discrimination thresholds were defined as the interval magnitude
yielding 75% of trials correct.

Error bars
Except where otherwise noted in figure captions, error bars in results
figures indicate ±2 standard errors of the mean across 10 neural net-
work architectures (model results) or across experiment participants
(human results). There are two exceptions. The first is in plots of
aggregate measures of model task performance and human-model
similarity (Fig. 2a–c, Fig. 4e, Supplementary Fig. 1a–c, and Supple-
mentary Fig. 9b–g), where error bars indicate 95% confidence intervals
bootstrapped across 10 neural network architectures. The second
exception is Fig. 3h, where the human error bars indicate ±2 standard
errors from 1 listener (the original experiment’s only participant68)
averaged across 4 different pure tone frequencies.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data, models, and stimuli are available at https://github.com/
msaddler/phaselocknet. Source data are provided with this paper.

Code availability
Code for training and evaluating models, running experiments, ana-
lyzing results, and generatingfigures is available athttps://github.com/
msaddler/phaselocknet. Models and analyses were implemented in
Python (3.11.4) using the TensorFlow (2.13.0) and PyTorch (2.2.1) deep
learning libraries.
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Supplementary Fig. 1 | Models with access to phase-locked spike timing have better and more human-like hearing (alternate 
human-model similarity metric). As in Fig. 2, each panel corresponds to a different task and summarizes the effect of auditory nerve 
phase locking limit on i) naturalistic model task performance and ii) overall human-model behavioral similarity. The difference from Fig. 2 
is that overall human-model behavioral similarity is quantified as the root-mean-squared error between analogous human and model data 
points, min-max normalized by the human data to account for differences in measurement units across experiments and then averaged 
across all experiments for each model task (right y-axes; dotted lines). The right y-axes are inverted such that higher positions correspond 
to more human-like behavior. Naturalistic task performance is quantified as a single number averaged across noise conditions (left y-
axes; solid lines). Error bars indicate 95% confidence intervals bootstrapped across 10 network architectures for each model. a. Sound 
localization. The left y-axis plots mean absolute error for the sound localization model and is inverted so that better model performance 
corresponds to higher positions on the y-axis. b. Voice recognition. Here and in c, the left y-axes plot percent correct for the model when 
tested on speech in noise. c. Word recognition. All models reproduced human word recognition fairly well according to this alternative 
metric, but the 50 Hz model was still worst overall, and the change in human-model similarity, while modest, was largest between the 50 
Hz and 320 Hz models than between the other phase locking limits. We note that a model only needs to appear worse than others 
according to one metric to be ruled out, and the correlation metric was more diagnostic in this case. This is because the 50 Hz model 
exhibits a qualitative discrepancy for one experiment (Fig. 7a-c), and this is revealed most clearly with a correlation metric. 
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Supplementary Fig. 2 | Effect of phase locking on all sound localization experiments. This grid summarizes the behavioral data 
used to measure human-model similarity scores for the localization models. The first four columns correspond to models optimized with 
different phase locking limits. The fifth (orange) column corresponds to the 3000 Hz phase locking model with network architectures 
modified to delay binaural integration. The sixth column contains results from human listeners. The rightmost two columns quantify 
human-similarity by measuring Pearson correlations and root-mean-squared error between analogous human and model data points. 
Violin plots depict bootstrapped distributions of human-model similarity scores across 10 network architectures per phase locking 
condition. Rows correspond to 10 different sound localization experiments. a. Sound localization in noise. b. Minimum audible angle vs. 
frequency. c. ITD / ILD cue weighting. d. ITD lateralization vs. frequency. e. Effect of changing ears. f. Effect of smoothing spectral cues. 
g. Precedence effect. h. Bandwidth dependency of localization. i. Median plane spectral cues. j. Speech localization in noise and 
reverberation (model experiment only). All model error bars indicate ±2 standard errors of the mean across 10 network architectures. 
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Supplementary Fig. 3 | Localization models with degraded auditory nerve spike timing rely on spectral cues to judge azimuth 
as well as elevation. Whereas localization in azimuth is dominated by binaural cues, localization in elevation is mediated in large part 
by spectral cues from the pinnae of the outer ear. Manipulating these spectral cues -- either physically by altering pinna shape with an 
ear mold1 or virtually by altering the head-related transfer function (HRTF) used to spatialize a sound2 via earphones -- impairs elevation 
judgments by humans. These same manipulations have minimal effects on azimuth judgments. This figure shows the results of altered 
phase locking limits on the effect of spectral cues to localization. 

Hofman et al. (1998) measured human localization of white noise bursts before and after inserting plastic molds into participants’ 
ears to change the pinnae’s direction-specific filtering (a). Human sound localization judgments (thick lines, circle markers) with the 
participants’ original (left) and modified (right) ears are plotted as a function of azimuth and elevation, superimposed on a grid of the true 
locations (thin lines, no markers). Data were scanned from the original study1, averaged across 4 participants, and re-plotted here. 
Photographs in a reproduced with permission from Springer Nature: Hofman et al., Nature Neuroscience, Volume 1 no 5, page 418, 
September 1998, Springer Nature. In an analogous experiment (b), we evaluated models with four different phase locking limits on white 
noise bursts rendered with either the HRTFs used for training (trained ears) or a different set of HRTFs (untrained ears). Models were 
always trained using HRTFs measured from a standard model of the human head and torso3 (KEMAR). The model “untrained ears” were 
alterative HRTFs measured from the ears of 45 different people (results shown are averaged across the 45 sets of HRTFs). Model data 
are plotted with the same conventions as in (a). When tested with alternative pinnae, elevation judgments collapsed in all models, as in 
human listeners with ear molds, indicating that spectral cues were used irrespective of phase locking. However, the effect of alternative 
ears on azimuth was different for different phase locking cutoffs. Panel (c) plots the increase in mean absolute azimuth and elevation 
error due to ear alteration for humans and for each model. Error bars indicate ±2 standard errors of the mean across 4 human participants 
or 10 network architectures. In human listeners and in models with high-fidelity temporal coding, changing pinnae had little effect on 
azimuthal accuracy. But in models with degraded temporal coding, azimuthal localization accuracy was worse with alternative pinnae 
indicating that the absence of phase locking rendered models dependent on pinna cues for azimuthal localization, unlike humans. These 
results suggest that human-like dependence on ear-specific cues (i.e., only for elevation) emerges only when models have access to 
phase-locked spike timing. 
 This non-human-like dependence of azimuthal localization on monaural spectral cues was also evident in the effects of removing 
spectral details from the cues. We progressively smoothed the power spectra of the trained HRTFs by lowering the number of cosines 
used to approximate the discrete cosine transform (d). We measured the effect of this spectral smoothing on model localization of white 
noise bursts. Mean absolute elevation (top) and azimuth (bottom) errors are plotted as a function of the HRTF smoothing parameter used 
to render stimuli for the models (e). Error bars indicate ±2 standard errors of the mean across 10 network architectures. As the peaks and 
valleys of the trained HRTFs were parametrically smoothed away, model elevation judgments progressively collapsed, regardless of 
phase locking limit, as expected. By contrast, azimuth judgments were significantly more impaired by the smoothing in models with lower 
phase locking limits, suggesting they learned to use fine spectral details to localize in azimuth as well as elevation (unlike humans with 
normal hearing but consistent with the behavior of some single-sided cochlear implant users4).  
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Supplementary Fig. 4 | Models optimized separately for word and voice recognition -- effect of phase locking on all speech 
experiments. The same network architectures optimized jointly for word and voice recognition in the main text were also optimized 
separately for the word and voice recognition tasks for each phase locking condition. This yielded similar results to the jointly optimized 
models. The first four columns correspond to models optimized with different phase locking limits. The fifth column contains results from 
human listeners. The rightmost two columns quantify human-similarity by measuring Pearson correlations and root-mean-squared error 
between analogous human and model data points. Violin plots depict bootstrapped distributions of human-model similarity scores across 
10 network architectures per phase locking condition. Rows correspond to 7 speech experiments. a. Word recognition in real-world noise 
conditions. b. Voice recognition in real-world noise conditions (model experiment only). c. Word recognition in 43 distinct auditory textures 
at -3 dB SNR. d. Voice recognition in 43 distinct auditory textures at -3 dB SNR (model experiment only). e. Word and voice recognition 
with F0-shifted speech. f. Word and voice recognition with harmonic and inharmonic speech. g. Effect of tone vocoding on word 
recognition in stationary and modulated noise. All model error bars indicate ±2 standard errors of the mean across 10 network 
architectures. 
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Supplementary Fig. 5 | Models optimized jointly for word and voice recognition -- effect of phase locking on all speech 
experiments. This grid summarizes the behavioral data used to measure human-model similarity scores for the word and voice 
recognition models. The first four columns correspond to models optimized with different phase locking limits. The fifth column contains 
results from human listeners. The rightmost two columns quantify human-similarity by measuring Pearson correlations and root-mean-
squared error between analogous human and model data points. Violin plots depict bootstrapped distributions of human-model similarity 
scores across 10 network architectures per phase locking condition. Rows correspond to 7 speech experiments. a. Word recognition in 
real-world noise conditions. b. Voice recognition in real-world noise conditions (model experiment only). c. Word recognition in 43 distinct 
auditory textures at -3 dB SNR. d. Voice recognition in 43 distinct auditory textures at -3 dB SNR (model experiment only). e. Word and 
voice recognition with F0-shifted speech. f. Word and voice recognition with harmonic and inharmonic speech. g. Effect of tone vocoding 
on word recognition in stationary and modulated noise. All model error bars indicate ±2 standard errors of the mean across 10 network 
architectures. 
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Supplementary Fig. 6 | Word and voice recognition in real-world auditory textures. a. Human and model word recognition for speech 
embedded in 43 distinct auditory textures at -3 dB SNR. b. Model voice recognition for the same stimuli. Error bars indicate ±2 standard 
errors of the mean across 47 human participants or 10 network architectures. 
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Supplementary Fig. 7 | Model word and voice recognition with inharmonic speech in noise. To directly compare effects of the 
inharmonicity and tone vocoding stimulus manipulations on model word recognition in noise, we measured word recognition accuracy in 
stationary and modulated speech-shaped noise at SNRs between -18 and +15 dB in 3 dB increments using (a.) natural, (b.) tone-vocoded, 
and (c.) inharmonic versions of the same speech. The tone-vocoded speech was fully vocoded (0 channels with intact TFS). d. Model 
word recognition with inharmonic speech as a function of SNR in four different types of real-world noise. e. Model voice recognition with 
inharmonic speech as a function of SNR in four different types of real-world noise. All error bars indicate ±2 standard errors of the mean 
across 10 network architectures. 
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Supplementary Fig. 8 | Models optimized jointly for word and voice recognition exhibit a larger effect of tone vocoding than 
models optimized solely for word recognition. Tone vocoding results for 3000 Hz phase locking models optimized for either word 
recognition only (left panel) or word and voice recognition jointly (right panel). Plotting conventions are identical to Fig. 7c. Speech 
reception thresholds were measured using progressively tone-vocoded speech in noise. The benefit from temporal fine structure was 
quantified as the dB improvement in speech reception thresholds relative to performance with fully tone-vocoded speech (0 channels 
intact). The benefit from temporal fine structure is plotted as a function of the number of channels with intact temporal fine structure. Open 
circles plot the benefit in stationary noise and closed circles plot the benefit in amplitude-modulated noise. Error bars indicate ±2 standard 
errors of the mean across 10 network architectures. The statistical significance of differences between the two models was assessed by 
two-tailed paired comparisons against bootstrapped null distributions from the model optimized solely for word recognition. Exact p-values 
were 2.1e-14 (effect on stationary noise), and 4.4e-18 (effect on modulated noise), and 7.5e-10 (effect on difference between stationary 
and modulated noise). 
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Supplementary Fig. 9 | Comparison of model results with detailed vs. simplified cochlear stages. a. The strength of phase locking 
as a function of frequency for simulated auditory nerve fibers under four inner hair cell (IHC) low-pass filter cutoffs (different colors). Nerve 
fibers simulated with the detailed auditory nerve model5 (open symbols) and the simplified cochlear model (solid symbols) exhibit similar 
roll-offs in phase locking. The three different symbol shapes indicate high-, medium-, and low-spontaneous-rate (HSR, MSR, and LSR) 
auditory nerve fibers. Panels b, c, and d present results for models operating on input from the detailed auditory nerve model. b. 
Aggregate measures of task performance in noise as a function of phase locking. Word and voice recognition performance are plotted 
on the left y-axis (solid lines). Localization model performance is plotted on the right y-axis (dotted lines). c. Aggregate measure of human-
model similarity (quantified as the Pearson correlation coefficient averaged across all experiments for each task) as a function of phase 
locking. d. Aggregate measure of human-model similarity (quantified as the min-max normalized root-mean-squared error averaged 
across all experiments for each task) as a function of phase locking. Panels e, f, and g are formatted identically to b, c, and d but present 
results for models operating on input from the simplified cochlear model. The orange symbol in panels b - g represents the 3000 Hz 
sound localization model with delayed interaural integration (see Fig. 4). Error bars indicate 95% confidence intervals bootstrapped across 
10 network architectures for each model. We note that the model with the simplified cochlea stage exhibited thresholds for the pure tone 
lateralization experiment that were poor overall (see Supplementary Fig. 10d). This has a large impact on the RMS metric (accounting 
for the apparent lack of benefit of delayed binaural integration) even though the results are qualitatively similar to those of the model with 
the detailed peripheral stage (as is captured by the correlation metric).  
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Supplementary Fig. 10 | Simplified cochlear model -- effect of phase locking on all sound localization experiments. This grid 
summarizes the behavioral data used to measure human-model similarity scores for localization models with the simplified cochlear stage 
(see Supplemental Fig. 2 for analogous results with detailed the auditory nerve model). The first four columns correspond to models 
optimized with different phase locking limits. The fifth (orange) column corresponds to the 3000 Hz phase locking model with network 
architectures modified to delay binaural integration. The sixth column contains results from human listeners. The rightmost two columns 
quantify human-similarity by measuring Pearson correlations and root-mean-squared error between analogous human and model data 
points. Violin plots depict bootstrapped distributions of human-model similarity scores across 10 network architectures per phase locking 
condition. Rows correspond to 10 different sound localization experiments. a. Sound localization in noise. b. Minimum audible angle vs. 
frequency. c. ITD / ILD cue weighting. d. ITD lateralization vs. frequency. e. Effect of changing ears. f. Effect of smoothing spectral cues. 
g. Precedence effect. h. Bandwidth dependency of localization. i. Median plane spectral cues. j. Speech localization in noise and 
reverberation (model experiment only). All model error bars indicate ±2 standard errors of the mean across 10 network architectures.  
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Supplementary Fig. 11 | Simplified cochlear model -- effect of phase locking on all speech experiments. This grid summarizes the 
behavioral data used to measure human-model similarity scores for the word and voice recognition models with the simplified cochlear 
stage (see Supplemental Fig. 5 for analogous results with the detailed auditory nerve model). The first four columns correspond to models 
optimized with different phase locking limits. The fifth column contains results from human listeners. The rightmost two columns quantify 
human-similarity by measuring Pearson correlations and root-mean-squared error between analogous human and model data points. 
Violin plots depict bootstrapped distributions of human-model similarity scores across 10 network architectures per phase locking 
condition. Rows correspond to 7 speech experiments. a. Word recognition in real-world noise conditions. b. Voice recognition in real-
world noise conditions (model experiment only). c. Word recognition in 43 distinct auditory textures at -3 dB SNR. d. Voice recognition in 
43 distinct auditory textures at -3 dB SNR (model experiment only). e. Word and voice recognition with F0-shifted speech. f. Word and 
voice recognition with harmonic and inharmonic speech. g. Effect of tone vocoding on word recognition in stationary and modulated noise. 
All model error bars indicate ±2 standard errors of the mean across 10 network architectures. 
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Supplementary Fig. 12 | Effect of increasing auditory nerve sampling rate from 10 to 20 kHz. (a-c) Each panel in this grid compares 
a measure of overall task performance (row a) or human-model similarity (rows b and c) between otherwise identical models with 10 or 
20 kHz auditory nerve sampling rates. The four columns respectively feature results from sound localization models without delayed 
interaural integration, sound localization models with delayed interaural integration, voice recognition models, and word recognition 
models. All models had phase locking up to 3000 Hz. a. Effects on overall task performance in noise, quantified as mean absolute error 
for sound localization and percent correct for voice and word recognition. b. Effects on overall human-model similarity, quantified as the 
Pearson correlation coefficient averaged across all experiments for each task. c. Effects on overall human-model similarity, quantified as 
the root-mean-squared error min-max normalized and averaged across all experiments for each task. All y-axes are oriented such that 
higher positions correspond to better or more human-like task performance. Violin plots depict bootstrapped distributions across 10 
network architectures. Two-tailed p-values indicate the probability of obtaining a score more extreme than the mean of the 20 kHz model 
under a bootstrapped null distribution from the 10 kHz model (p-values were not corrected for multiple comparisons). Results from the 
individual experiments are shown in Supplementary Fig. 13 (sound localization) and 14 (word and voice recognition). Overall, results 
were very similar for the two auditory nerve sampling rates. The two instances where there were statistically significant differences (word 
recognition task performance: p=2e-4; word recognition human-model RMS error: p=1.8e-6) were small in absolute terms. d. Effect of 
auditory nerve sampling rate on deep neural network frequency discrimination thresholds. Thresholds for the four ideal observer models 
(gold and yellow lines) and the 20 kHz sampling rate deep neural network model (green) are re-plotted from Fig. 8c. Here, we have added 
a 10 kHz sampling rate model (grey), which closely matches the 20 kHz model as well as the ideal observer “all-information” ideal 
observers. Deep neural network model thresholds are plotted as the mean across 10 network architectures for each phase locking 
conditions (thick green and grey lines; error bars indicate ±2 standard errors of the mean). Thin lines plot thresholds from individual 
network architectures. 
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Supplementary Fig. 13 | Effect of increasing auditory nerve sampling rate from 10 to 20 kHz on all sound localization 
experiments. This grid compares results from sound localization models with auditory nerve sampling rates of either 10 kHz (first and 
third columns) or 20 kHz (second and fourth columns; highlighted green). All models had phase locking up to 3000 Hz. The first and 
second columns contain results from models without delayed interaural integration. The third and fourth columns contain results from 
models with delayed interaural integration. The fifth and sixth columns quantify human-similarity by measuring Pearson correlations and 
root-mean-squared error between analogous human and model data points. Violin plots depict bootstrapped distributions of human-model 
similarity scores across 10 network architectures per condition. Rows correspond to 10 different sound localization experiments. a. Sound 
localization in noise. b. Minimum audible angle vs. frequency. c. ITD / ILD cue weighting. d. ITD lateralization vs. frequency. e. Effect of 
changing ears. f. Effect of smoothing spectral cues. g. Precedence effect. h. Bandwidth dependency of localization. i. Median plane 
spectral cues. j. Speech localization in noise and reverberation (model experiment only). All model error bars indicate ±2 standard errors 
of the mean across 10 network architectures. Overall, results were very similar for the two auditory nerve sampling rates.  

3000 Hz IHC filter
(delayed interaural integration)

10 kHz 20kHz

3000 Hz IHC filter

10 kHz 20kHz

a

b

c

e

g

d

f

h

i

Human-model comparison
Pearson ! RMS error

j

Auditory nerve 
sampling rate:



 14 

 

 
 
Supplementary Fig. 14 | Effect of increasing auditory nerve sampling rate from 10 to 20 kHz on all speech experiments. This grid 
compares results from word and voice recognition models with auditory nerve sampling rates of either 10 kHz (first column) or 20 kHz 
(second column; highlighted green). The third and fourth columns quantify human-similarity by measuring Pearson correlations and root-
mean-squared error between analogous human and model data points. Violin plots depict bootstrapped distributions of human-model 
similarity scores across 10 network architectures per condition. Rows correspond to 7 speech experiments. a. Word recognition in real-
world noise conditions. b. Voice recognition in real-world noise conditions (model experiment only). c. Word recognition in 43 distinct 
auditory textures at -3 dB SNR. d. Voice recognition in 43 distinct auditory textures at -3 dB SNR (model experiment only). e. Word and 
voice recognition with F0-shifted speech. f. Word and voice recognition with harmonic and inharmonic speech. g. Effect of tone vocoding 
on word recognition in stationary and modulated noise. All model error bars indicate ±2 standard errors of the mean across 10 network 
architectures. Overall, results were very similar for the two auditory nerve sampling rates. 
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Supplementary Table 1 | Neural network architectures for sound localization models. Grey bands indicate blocks of convolution, 
pooling, nonlinear rectification, and normalization operations. The convolution operations highlighted in orange were replaced with 
grouped convolutions (2 groups for the left and right ear) when network architectures were modified to delay binaural integration. Legend: 

• 𝑐𝑜𝑛𝑣	[ℎ, 𝑤, 𝑘] : convolutional layer with ℎ = kernel height (frequency dimension), 𝑤 = kernel width (time dimension), and 𝑘 = 
number of kernels 

• 𝑟𝑒𝑙𝑢 : rectified linear unit activation function 
• 𝑚𝑝𝑜𝑜𝑙	[𝑠!, 𝑠"]: max pooling operation with stride 𝑠! in the frequency dimension and stride 𝑠" in the time dimension 
• 𝑏𝑛𝑜𝑟𝑚 : batch normalization operation 
• 𝑓𝑙𝑎𝑡𝑡𝑒𝑛: multidimensional representation reshaped to a vector 
• 𝑓𝑐	[𝑁] : fully-connected layer with 𝑁 units 
• 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 : dropout regularization with 50% dropout rate 

  

Architecture arch_01 arch_02 arch_03 arch_04 arch_05 arch_06 arch_07 arch_08 arch_09 arch_10
Operation input [50,10000,6] input [50,10000,6] input [50,10000,6] input [50,10000,6] input [50,10000,6] input [50,10000,6] input [50,10000,6] input [50,10000,6] input [50,10000,6] input [50,10000,6]

1 conv0 [1, 8, 32] conv0 [2, 8, 32] conv0 [1, 4, 32] conv0 [3, 8, 32] conv0 [2, 32, 32] conv0 [1, 64, 32] conv0 [1, 16, 32] conv0 [1, 64, 32] conv0 [3, 32, 32] conv0 [2, 4, 32]

2 mpool0 [1, 1] mpool0 [1, 1] mpool0 [1, 1] mpool0 [1, 1] mpool0 [1, 2] mpool0 [1, 8] mpool0 [1, 1] mpool0 [1, 1] mpool0 [1, 1] mpool0 [2, 2]

3 relu0 relu0 relu0 relu0 relu0 relu0 relu0 relu0 relu0 relu0

4 bnorm0 bnorm0 bnorm0 bnorm0 bnorm0 bnorm0 bnorm0 bnorm0 bnorm0 bnorm0

5 conv1 [1, 64, 32] conv1 [3, 16, 32] conv1 [3, 32, 32] conv1 [3, 8, 32] conv1 [1, 4, 64] conv1 [2, 4, 64] conv1 [1, 8, 32] conv1 [2, 16, 32] conv1 [2, 16, 32] conv1 [2, 4, 32]

6 mpool1 [1, 1] mpool1 [1, 1] mpool1 [1, 8] mpool1 [1, 2] mpool1 [1, 4] mpool1 [1, 1] mpool1 [1, 2] mpool1 [1, 8] mpool1 [1, 4] mpool1 [1, 4]

7 relu1 relu1 relu1 relu1 relu1 relu1 relu1 relu1 relu1 relu1

8 bnorm1 bnorm1 bnorm1 bnorm1 bnorm1 bnorm1 bnorm1 bnorm1 bnorm1 bnorm1

9 conv2 [1, 64, 32] conv2 [2, 4, 32] conv2 [3, 32, 64] conv2 [1, 32, 64] conv2 [3, 2, 64] conv2 [1, 32, 64] conv2 [2, 4, 64] conv2 [2, 4, 64] conv2 [2, 32, 64] conv2 [3, 16, 64]

10 mpool2 [1, 8] mpool2 [1, 8] mpool2 [1, 1] mpool2 [1, 1] mpool2 [1, 1] mpool2 [2, 4] mpool2 [1, 1] mpool2 [1, 1] mpool2 [1, 1] mpool2 [1, 2]

11 relu2 relu2 relu2 relu2 relu2 relu2 relu2 relu2 relu2 relu2

12 bnorm2 bnorm2 bnorm2 bnorm2 bnorm2 bnorm2 bnorm2 bnorm2 bnorm2 bnorm2

13 conv3 [2, 4, 64] conv3 [3, 16, 64] conv3 [1, 8, 64] conv3 [3, 8, 64] conv3 [2, 8, 64] conv3 [3, 4, 128] conv3 [2, 32, 64] conv3 [2, 16, 64] conv3 [3, 4, 64] conv3 [1, 2, 128]

14 mpool3 [2, 4] mpool3 [1, 1] mpool3 [1, 4] mpool3 [2, 4] mpool3 [1, 1] mpool3 [1, 1] mpool3 [1, 4] mpool3 [1, 1] mpool3 [1, 4] mpool3 [1, 2]

15 relu3 relu3 relu3 relu3 relu3 relu3 relu3 relu3 relu3 relu3

16 bnorm3 bnorm3 bnorm3 bnorm3 bnorm3 bnorm3 bnorm3 bnorm3 bnorm3 bnorm3

17 conv4 [3, 8, 128] conv4 [1, 8, 64] conv4 [3, 8, 64] conv4 [2, 2, 128] conv4 [1, 16, 64] conv4 [2, 16, 128] conv4 [3, 2, 64] conv4 [1, 16, 64] conv4 [3, 8, 128] flatten

18 mpool4 [1, 1] mpool4 [1, 4] mpool4 [1, 1] mpool4 [1, 4] mpool4 [1, 4] mpool4 [1, 2] mpool4 [1, 1] mpool4 [1, 2] mpool4 [1, 4] fc0 [512]

19 relu4 relu4 relu4 relu4 relu4 relu4 relu4 relu4 relu4 relu_fc0

20 bnorm4 bnorm4 bnorm4 bnorm4 bnorm4 bnorm4 bnorm4 bnorm4 bnorm4 bnorm_fc0

21 conv5 [3, 32, 128] conv5 [3, 8, 128] conv5 [1, 2, 64] conv5 [1, 4, 256] conv5 [3, 4, 128] conv5 [1, 2, 256] conv5 [1, 2, 64] conv5 [2, 32, 128] conv5 [3, 2, 256] dropout

22 mpool5 [1, 4] mpool5 [1, 4] mpool5 [1, 1] mpool5 [1, 1] mpool5 [1, 2] mpool5 [1, 1] mpool5 [2, 4] mpool5 [1, 4] mpool5 [1, 2] fc [504]

23 relu5 relu5 relu5 relu5 relu5 relu5 relu5 relu5 relu5

24 bnorm5 bnorm5 bnorm5 bnorm5 bnorm5 bnorm5 bnorm5 bnorm5 bnorm5

25 conv6 [3, 4, 256] conv6 [2, 2, 128] conv6 [2, 2, 64] conv6 [3, 2, 256] conv6 [3, 4, 256] conv6 [3, 4, 256] conv6 [1, 8, 128] conv6 [2, 16, 128] conv6 [2, 8, 512]

26 mpool6 [1, 1] mpool6 [1, 2] mpool6 [2, 4] mpool6 [1, 1] mpool6 [1, 1] mpool6 [1, 2] mpool6 [1, 1] mpool6 [1, 1] mpool6 [1, 1]

27 relu6 relu6 relu6 relu6 relu6 relu6 relu6 relu6 relu6

28 bnorm6 bnorm6 bnorm6 bnorm6 bnorm6 bnorm6 bnorm6 bnorm6 bnorm6

29 conv7 [3, 8, 256] conv7 [3, 2, 256] conv7 [2, 4, 128] conv7 [2, 2, 256] conv7 [3, 4, 256] flatten flatten conv7 [1, 2, 128] conv7 [3, 4, 512]

30 mpool7 [1, 2] mpool7 [1, 2] mpool7 [1, 1] mpool7 [1, 2] mpool7 [1, 1] fc0 [512] fc0 [512] mpool7 [1, 1] mpool7 [1, 2]

31 relu7 relu7 relu7 relu7 relu7 relu_fc0 relu_fc0 relu7 relu7

32 bnorm7 bnorm7 bnorm7 bnorm7 bnorm7 bnorm_fc0 bnorm_fc0 bnorm7 bnorm7

33 flatten conv8 [1, 8, 512] conv8 [1, 8, 128] flatten conv8 [2, 4, 256] dropout dropout conv8 [3, 16, 128] conv8 [1, 3, 512]

34 fc0 [512] mpool8 [1, 2] mpool8 [1, 1] fc0 [512] mpool8 [1, 2] fc [504] fc [504] mpool8 [1, 4] mpool8 [1, 1]

35 relu_fc0 relu8 relu8 relu_fc0 relu8 relu8 relu8

36 bnorm_fc0 bnorm8 bnorm8 bnorm_fc0 bnorm8 bnorm8 bnorm8

37 dropout flatten conv9 [3, 2, 128] dropout flatten flatten flatten

38 fc [504] fc0 [512] mpool9 [1, 4] fc [504] fc0 [512] fc0 [512] fc0 [512]

39 relu_fc0 relu9 relu_fc0 relu_fc0 relu_fc0

40 bnorm_fc0 bnorm9 bnorm_fc0 bnorm_fc0 bnorm_fc0

41 dropout flatten dropout dropout dropout

42 fc [504] fc0 [512] fc [504] fc [504] fc [504]

43 relu_fc0

44 bnorm_fc0

45 dropout

46 fc [504]

47
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Supplementary Table 2 | Neural network architectures for word and voice recognition models. Grey bands indicate blocks of 
convolution, pooling, nonlinear rectification, and normalization operations. For networks jointly optimized for word and voice recognition, 
there were two fully-connected read-out layers in parallel, one for each task (433 units for voice recognition and 794 units for word 
recognition). Legend: 

• 𝑐𝑜𝑛𝑣	[ℎ, 𝑤, 𝑘] : convolutional layer with ℎ = kernel height (frequency dimension), 𝑤 = kernel width (time dimension), and 𝑘 = 
number of kernels 

• 𝑟𝑒𝑙𝑢 : rectified linear unit activation function 
• ℎ𝑝𝑜𝑜𝑙	[𝑠!, 𝑠"]: Hanning window weighted averaged pooling operation with stride 𝑠! in the frequency dimension and stride 𝑠" in 

the time dimension 
• 𝑙𝑛𝑜𝑟𝑚 : layer normalization operation 
• 𝑓𝑙𝑎𝑡𝑡𝑒𝑛: multidimensional representation reshaped to a vector 
• 𝑓𝑐	[𝑁] : fully-connected layer with 𝑁 units 
• 𝑓𝑐	[𝑁#$%&' , 𝑁($)*]: two parallel fully-connected layers operating on the same input, one with 𝑁#$%&' units and one with 𝑁($)* units 
• 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 : dropout regularization with 50% dropout rate 

  

Architecture arch0_0000 arch0_0001 arch0_0002 arch0_0004 arch0_0006 arch0_0007 arch0_0008 arch0_0009 arch0_0016 arch0_0017
Operation input [50, 20000, 3] input [50, 20000, 3] input [50, 20000, 3] input [50, 20000, 3] input [50, 20000, 3] input [50, 20000, 3] input [50, 20000, 3] input [50, 20000, 3] input [50, 20000, 3] input [50, 20000, 3]

1 input_lnorm input_lnorm input_lnorm input_lnorm input_lnorm input_lnorm input_lnorm input_lnorm input_lnorm input_lnorm

2 conv0 [2, 42, 32] conv0 [1, 84, 32] conv0 [4, 21, 32] conv0 [2, 42, 32] conv0 [2, 42, 32] conv0 [2, 42, 32] conv0 [2, 42, 32] conv0 [2, 42, 32] conv0 [2, 42, 32] conv0 [2, 42, 32]

3 relu0 relu0 relu0 relu0 relu0 relu0 relu0 relu0 relu0 relu0

4 hpool0 [2, 4] hpool0 [2, 4] hpool0 [2, 4] hpool0 [2, 4] hpool0 [2, 4] hpool0 [2, 4] hpool0 [2, 4] hpool0 [2, 4] hpool0 [2, 4] hpool0 [2, 4]

5 lnorm0 lnorm0 lnorm0 lnorm0 lnorm0 lnorm0 lnorm0 lnorm0 lnorm0 lnorm0

6 conv1 [2, 18, 64] conv1 [2, 18, 64] conv1 [2, 18, 64] conv1 [4, 9, 64] conv1 [2, 18, 64] conv1 [2, 18, 64] conv1 [2, 18, 64] conv1 [2, 18, 64] conv1 [2, 18, 64] conv1 [2, 18, 64]

7 relu1 relu1 relu1 relu1 relu1 relu1 relu1 relu1 relu1 relu1

8 hpool1 [2, 4] hpool1 [2, 4] hpool1 [2, 4] hpool1 [2, 4] hpool1 [2, 4] hpool1 [2, 4] hpool1 [2, 4] hpool1 [2, 4] hpool1 [2, 4] hpool1 [2, 4]

9 lnorm1 lnorm1 lnorm1 lnorm1 lnorm1 lnorm1 lnorm1 lnorm1 lnorm1 lnorm1

10 conv2 [6, 6, 128] conv2 [6, 6, 128] conv2 [6, 6, 128] conv2 [6, 6, 128] conv2 [12, 3, 128] conv2 [6, 6, 128] conv2 [6, 6, 128] conv2 [6, 6, 128] conv2 [6, 6, 128] conv2 [6, 6, 128]

11 relu2 relu2 relu2 relu2 relu2 relu2 relu2 relu2 relu2 relu2

12 hpool2 [1, 4] hpool2 [1, 4] hpool2 [1, 4] hpool2 [1, 4] hpool2 [1, 4] hpool2 [1, 4] hpool2 [1, 4] hpool2 [1, 4] hpool2 [1, 4] hpool2 [1, 4]

13 lnorm2 lnorm2 lnorm2 lnorm2 lnorm2 lnorm2 lnorm2 lnorm2 lnorm2 lnorm2

14 conv3 [6, 6, 256] conv3 [6, 6, 256] conv3 [6, 6, 256] conv3 [6, 6, 256] conv3 [6, 6, 256] conv3 [3, 12, 256] conv3 [12, 3, 256] conv3 [6, 6, 256] conv3 [6, 6, 256] conv3 [6, 6, 256]

15 relu3 relu3 relu3 relu3 relu3 relu3 relu3 relu3 relu3 relu3

16 hpool3 [1, 4] hpool3 [1, 4] hpool3 [1, 4] hpool3 [1, 4] hpool3 [1, 4] hpool3 [1, 4] hpool3 [1, 4] hpool3 [1, 4] hpool3 [1, 4] hpool3 [1, 4]

17 lnorm3 lnorm3 lnorm3 lnorm3 lnorm3 lnorm3 lnorm3 lnorm3 lnorm3 lnorm3

18 conv4 [8, 8, 512] conv4 [8, 8, 512] conv4 [8, 8, 512] conv4 [8, 8, 512] conv4 [8, 8, 512] conv4 [8, 8, 512] conv4 [8, 8, 512] conv4 [4, 16, 512] conv4 [8, 8, 512] conv4 [8, 8, 512]

19 relu4 relu4 relu4 relu4 relu4 relu4 relu4 relu4 relu4 relu4

20 hpool4 [1, 1] hpool4 [1, 1] hpool4 [1, 1] hpool4 [1, 1] hpool4 [1, 1] hpool4 [1, 1] hpool4 [1, 1] hpool4 [1, 1] hpool4 [1, 1] hpool4 [1, 1]

21 lnorm4 lnorm4 lnorm4 lnorm4 lnorm4 lnorm4 lnorm4 lnorm4 lnorm4 lnorm4

22 conv5 [6, 6, 512] conv5 [6, 6, 512] conv5 [6, 6, 512] conv5 [6, 6, 512] conv5 [6, 6, 512] conv5 [6, 6, 512] conv5 [6, 6, 512] conv5 [6, 6, 512] conv5 [6, 6, 512] conv5 [6, 6, 512]

23 relu5 relu5 relu5 relu5 relu5 relu5 relu5 relu5 relu5 relu5

24 hpool5 [1, 1] hpool5 [1, 1] hpool5 [1, 1] hpool5 [1, 1] hpool5 [1, 1] hpool5 [1, 1] hpool5 [1, 1] hpool5 [1, 1] hpool5 [1, 1] hpool5 [1, 1]

25 lnorm5 lnorm5 lnorm5 lnorm5 lnorm5 lnorm5 lnorm5 lnorm5 lnorm5 lnorm5

26 conv6 [8, 8, 512] conv6 [8, 8, 512] conv6 [8, 8, 512] conv6 [8, 8, 512] conv6 [8, 8, 512] conv6 [8, 8, 512] conv6 [8, 8, 512] conv6 [8, 8, 512] conv6 [8, 8, 512] conv6 [8, 8, 512]

27 relu6 relu6 relu6 relu6 relu6 relu6 relu6 relu6 relu6 relu6

28 hpool6 [2, 4] hpool6 [2, 4] hpool6 [2, 4] hpool6 [2, 4] hpool6 [2, 4] hpool6 [2, 4] hpool6 [2, 4] hpool6 [2, 4] hpool6 [2, 4] hpool6 [2, 4]

29 lnorm6 lnorm6 lnorm6 lnorm6 lnorm6 lnorm6 lnorm6 lnorm6 lnorm6 lnorm6

30 flatten flatten flatten flatten flatten flatten flatten flatten conv7 [2, 8, 512] conv7 [8, 2, 512]

31 fc0 [512] fc0 [512] fc0 [512] fc0 [512] fc0 [512] fc0 [512] fc0 [512] fc0 [512] relu7 relu7

32 relu_fc0 relu_fc0 relu_fc0 relu_fc0 relu_fc0 relu_fc0 relu_fc0 relu_fc0 hpool7 [1, 1] hpool7 [1, 1]

33 lnorm_fc0 lnorm_fc0 lnorm_fc0 lnorm_fc0 lnorm_fc0 lnorm_fc0 lnorm_fc0 lnorm_fc0 lnorm7 lnorm7

34 dropout dropout dropout dropout dropout dropout dropout dropout flatten flatten

35 fc [433, 794] fc [433, 794] fc [433, 794] fc [433, 794] fc [433, 794] fc [433, 794] fc [433, 794] fc [433, 794] fc0 [512] fc0 [512]

36 relu_fc0 relu_fc0

37 lnorm_fc0 lnorm_fc0

38 dropout dropout

39 fc [433, 794] fc [433, 794]
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Supplementary Table 3 | Neural network architectures for frequency discrimination models. Grey bands indicate blocks of 
convolution, pooling, nonlinear rectification, and normalization operations. Networks operated on auditory nerve representations of two 
pure tones with different frequencies and were tasked with reporting which tone had a higher frequency (binary classification). Legend: 

• 𝑐𝑜𝑛𝑣	[ℎ, 𝑤, 𝑘] : convolutional layer with ℎ = kernel height (frequency dimension), 𝑤 = kernel width (time dimension), and 𝑘 = 
number of kernels 

• 𝑟𝑒𝑙𝑢 : rectified linear unit activation function 
• ℎ𝑝𝑜𝑜𝑙	[𝑠!, 𝑠"]: Hanning window weighted averaged pooling operation with stride 𝑠! in the frequency dimension and stride 𝑠" in 

the time dimension 
• 𝑏𝑛𝑜𝑟𝑚 : batch normalization operation 
• 𝑓𝑙𝑎𝑡𝑡𝑒𝑛: multidimensional representation reshaped to a vector 
• 𝑓𝑐	[𝑁] : fully-connected layer with 𝑁 units 
• 𝑑𝑟𝑜𝑝𝑜𝑢𝑡 : dropout regularization with 50% dropout rate 

  

Architecture arch_f00 arch_f04 arch_f05 arch_f06 arch_f09 arch_f11 arch_f13 arch_f15 arch_f17 arch_f20
Operation input [60, 5000, 2] input [60, 5000, 2] input [60, 5000, 2] input [60, 5000, 2] input [60, 5000, 2] input [60, 5000, 2] input [60, 5000, 2] input [60, 5000, 2] input [60, 5000, 2] input [60, 5000, 2]

1 conv0 [3, 53, 32] conv0 [3, 53, 64] conv0 [3, 53, 32] conv0 [3, 53, 64] conv0 [3, 53, 64] conv0 [3, 53, 32] conv0 [3, 53, 32] conv0 [3, 53, 64] conv0 [3, 53, 64] conv0 [3, 53, 64]

2 relu0 relu0 relu0 relu0 relu0 relu0 relu0 relu0 relu0 relu0

3 hpool0 [1, 2] hpool0 [1, 2] hpool0 [1, 2] hpool0 [1, 2] hpool0 [1, 2] hpool0 [1, 2] hpool0 [1, 2] hpool0 [1, 2] hpool0 [1, 2] hpool0 [1, 2]

4 bnorm0 bnorm0 bnorm0 bnorm0 bnorm0 bnorm0 bnorm0 bnorm0 bnorm0 bnorm0

5 conv1 [1, 60, 64] conv1 [1, 60, 64] conv1 [1, 60, 128] conv1 [1, 60, 128] conv1 [3, 20, 128] conv1 [1, 60, 64] conv1 [3, 20, 64] conv1 [1, 60, 64] conv1 [1, 60, 128] conv1 [3, 20, 128]

6 relu1 relu1 relu1 relu1 relu1 relu1 relu1 relu1 relu1 relu1

7 hpool1 [2, 4] hpool1 [2, 4] hpool1 [2, 4] hpool1 [2, 4] hpool1 [2, 4] hpool1 [2, 4] hpool1 [2, 4] hpool1 [2, 4] hpool1 [2, 4] hpool1 [2, 4]

8 bnorm1 bnorm1 bnorm1 bnorm1 bnorm1 bnorm1 bnorm1 bnorm1 bnorm1 bnorm1

9 conv2 [3, 46, 128] conv2 [3, 46, 128] conv2 [3, 46, 128] conv2 [3, 46, 128] conv2 [3, 46, 128] conv2 [3, 46, 128] conv2 [3, 46, 128] conv2 [3, 46, 128] conv2 [3, 46, 128] conv2 [3, 46, 128]

10 relu2 relu2 relu2 relu2 relu2 relu2 relu2 relu2 relu2 relu2

11 hpool2 [1, 6] hpool2 [1, 6] hpool2 [1, 6] hpool2 [1, 6] hpool2 [1, 6] hpool2 [1, 6] hpool2 [1, 6] hpool2 [1, 6] hpool2 [1, 6] hpool2 [1, 6]

12 bnorm2 bnorm2 bnorm2 bnorm2 bnorm2 bnorm2 bnorm2 bnorm2 bnorm2 bnorm2

13 conv3 [8, 1, 256] conv3 [8, 1, 256] conv3 [8, 1, 256] conv3 [8, 1, 256] conv3 [8, 1, 256] conv3 [8, 1, 256] conv3 [8, 1, 256] conv3 [8, 1, 256] conv3 [8, 1, 256] conv3 [8, 1, 256]

14 relu3 relu3 relu3 relu3 relu3 relu3 relu3 relu3 relu3 relu3

15 hpool3 [2, 2] hpool3 [2, 2] hpool3 [2, 2] hpool3 [2, 2] hpool3 [2, 2] hpool3 [2, 2] hpool3 [2, 2] hpool3 [2, 2] hpool3 [2, 2] hpool3 [2, 2]

16 bnorm3 bnorm3 bnorm3 bnorm3 bnorm3 bnorm3 bnorm3 bnorm3 bnorm3 bnorm3

17 conv4 [7, 2, 256] conv4 [7, 2, 256] conv4 [7, 2, 256] conv4 [7, 2, 256] conv4 [7, 2, 256] conv4 [7, 2, 256] conv4 [7, 2, 256] conv4 [7, 2, 256] conv4 [7, 2, 256] conv4 [7, 2, 256]

18 relu4 relu4 relu4 relu4 relu4 relu4 relu4 relu4 relu4 relu4

19 hpool4 [1, 1] hpool4 [1, 1] hpool4 [1, 1] hpool4 [1, 1] hpool4 [1, 1] hpool4 [1, 1] hpool4 [1, 1] hpool4 [1, 1] hpool4 [1, 1] hpool4 [1, 1]

20 bnorm4 bnorm4 bnorm4 bnorm4 bnorm4 bnorm4 bnorm4 bnorm4 bnorm4 bnorm4

21 conv5 [2, 2, 512] conv5 [2, 2, 512] conv5 [2, 2, 512] conv5 [2, 2, 512] conv5 [2, 2, 512] conv5 [2, 2, 512] conv5 [2, 2, 512] conv5 [2, 2, 512] conv5 [2, 2, 512] conv5 [2, 2, 512]

22 relu5 relu5 relu5 relu5 relu5 relu5 relu5 relu5 relu5 relu5

23 hpool5 [2, 1] hpool5 [2, 1] hpool5 [2, 1] hpool5 [2, 1] hpool5 [2, 1] hpool5 [2, 1] hpool5 [2, 1] hpool5 [2, 1] hpool5 [2, 1] hpool5 [2, 1]

24 bnorm5 bnorm5 bnorm5 bnorm5 bnorm5 bnorm5 bnorm5 bnorm5 bnorm5 bnorm5

25 conv6 [1, 1, 512] conv6 [1, 1, 512] conv6 [1, 1, 512] conv6 [1, 1, 512] conv6 [1, 1, 512] conv6 [1, 1, 512] conv6 [1, 1, 512] conv6 [1, 1, 512] conv6 [1, 1, 512] conv6 [1, 1, 512]

26 relu6 relu6 relu6 relu6 relu6 relu6 relu6 relu6 relu6 relu6

27 hpool6 [1, 1] hpool6 [1, 1] hpool6 [1, 1] hpool6 [1, 1] hpool6 [1, 1] hpool6 [1, 1] hpool6 [1, 1] hpool6 [1, 1] hpool6 [1, 1] hpool6 [1, 1]

28 bnorm6 bnorm6 bnorm6 bnorm6 bnorm6 bnorm6 bnorm6 bnorm6 bnorm6 bnorm6

29 flatten flatten flatten flatten flatten flatten flatten flatten flatten flatten

30 fc0 [512] fc0 [512] fc0 [512] fc0 [512] fc0 [512] fc0 [1024] fc0 [1024] fc0 [1024] fc0 [1024] fc0 [1024]

31 relu_fc0 relu_fc0 relu_fc0 relu_fc0 relu_fc0 relu_fc0 relu_fc0 relu_fc0 relu_fc0 relu_fc0

32 bnorm_fc0 bnorm_fc0 bnorm_fc0 bnorm_fc0 bnorm_fc0 bnorm_fc0 bnorm_fc0 bnorm_fc0 bnorm_fc0 bnorm_fc0

33 dropout dropout dropout dropout dropout dropout dropout dropout dropout dropout

34 fc [1] fc [1] fc [1] fc [1] fc [1] fc [1] fc [1] fc [1] fc [1] fc [1]
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